File size: 10,780 Bytes
32b542e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import torch
from torch import nn
import torch.nn.functional as F
from typing import Optional, Any, Union, Callable
from torch import Tensor
from .create_act import get_act_layer, get_activation
from timm.models.layers import DropPath
from .layer_norm import LayerNorm
from .pe_encoder import DeepPrompt
class TransformerEncoderLayer(nn.Module):
r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
This standard encoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
activation: the activation function of the intermediate layer, can be a string
("relu" or "gelu") or a unary callable. Default: relu
layer_norm_eps: the eps value in layer normalization components (default=1e-5).
batch_first: If ``True``, then the input and output tensors are provided
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
norm_first: if ``True``, layer norm is done prior to attention and feedforward
operations, respectivaly. Otherwise it's done after. Default: ``False`` (after).
Examples::
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> src = torch.rand(10, 32, 512)
>>> out = encoder_layer(src)
Alternatively, when ``batch_first`` is ``True``:
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
>>> src = torch.rand(32, 10, 512)
>>> out = encoder_layer(src)
Fast path:
forward() will use a special optimized implementation if all of the following
conditions are met:
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor
argument ``requires_grad``
- training is disabled (using ``.eval()``)
- batch_first is ``True`` and the input is batched (i.e., ``src.dim() == 3``)
- norm_first is ``False`` (this restriction may be loosened in the future)
- activation is one of: ``"relu"``, ``"gelu"``, ``torch.functional.relu``, or ``torch.functional.gelu``
- at most one of ``src_mask`` and ``src_key_padding_mask`` is passed
- if src is a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_, neither ``src_mask``
nor ``src_key_padding_mask`` is passed
- the two ``LayerNorm`` instances have a consistent ``eps`` value (this will naturally be the case
unless the caller has manually modified one without modifying the other)
If the optimized implementation is in use, a
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be
passed for ``src`` to represent padding more efficiently than using a padding
mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ will be
returned, and an additional speedup proportional to the fraction of the input that
is padding can be expected.
"""
__constants__ = ['batch_first', 'norm_first'] # we inherit this variable from pytorch's code for jit
def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1, drop_path_ratio: float = 0.1,
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, layer_scale: bool = False, ls_init_values: float = 1e-3,
layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
device=None, dtype=None, cfg: dict = None) -> None:
#
factory_kwargs = {}
super(TransformerEncoderLayer, self).__init__()
self.cfg = cfg
# The interface of nn.MultiheadAttention changed since torch 1.9.0.
_torch_version_main = torch.__version__.split('.')[:2]
if (int(_torch_version_main[0]) >= 1) and (int(_torch_version_main[1])) >= 9:
self._torch_nn_new_interface = True
else:
self._torch_nn_new_interface = False
if self._torch_nn_new_interface:
factory_kwargs = {'device': device, 'dtype': dtype}
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first,
**factory_kwargs)
else:
factory_kwargs = {}
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout,
**factory_kwargs)
self.batch_first = batch_first
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward, **factory_kwargs)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model, **factory_kwargs)
self.norm_first = norm_first
if self.cfg.SOLVER.FUSED_LAYERNORM:
self.norm1 = LayerNorm(d_model, eps=layer_norm_eps)
self.norm2 = LayerNorm(d_model, eps=layer_norm_eps)
else:
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.drop_path1 = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()
self.drop_path2 = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()
self.layer_scale = layer_scale
if self.layer_scale:
self.gamma_1 = nn.Parameter(ls_init_values * torch.ones((d_model)),requires_grad=True)
self.gamma_2 = nn.Parameter(ls_init_values * torch.ones((d_model)),requires_grad=True)
# Legacy string support for activation function.
if isinstance(activation, str):
activation = get_activation(activation)
self.activation = activation
# prompt embedding setup
self.deep_prompt = self.cfg.MODEL.PROMPT_EMBED.DEEP_PROMPT
if self.deep_prompt:
self.deep_prompt_embedding = DeepPrompt(cfg)
def __setstate__(self, state):
if 'activation' not in state:
state['activation'] = F.relu
super(TransformerEncoderLayer, self).__setstate__(state)
def forward(self,
src: Tensor,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
history_states: Optional[Tensor] = None,
**kwargs) -> Tensor:
r"""Pass the input through the encoder layer.
Args:
src: the sequence to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
# see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf
if self.batch_first and not self._torch_nn_new_interface:
x = src.transpose(0,1)
if history_states is not None:
history_states = history_states.transpose(0,1)
else:
x = src
if self.norm_first:
history_states_norm = history_states if (history_states is None) else self.norm1(history_states)
x = x + self._sa_block(self.norm1(x), src_mask, src_key_padding_mask, history_states=history_states_norm, **kwargs)
x = x + self._ff_block(self.norm2(x), **kwargs)
else:
x = self.norm1(x + self._sa_block(x, src_mask, src_key_padding_mask, history_states=history_states, **kwargs))
x = self.norm2(x + self._ff_block(x), **kwargs)
if self.batch_first and not self._torch_nn_new_interface:
x = x.transpose(0, 1)
return x
# self-attention block
def _sa_block(self, x: Tensor, attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], history_states: Optional[Tensor],
**kwargs) -> Tensor:
if history_states is not None:
kv = torch.cat(
[history_states, x],
dim=1 if (self.batch_first and self._torch_nn_new_interface) else 0
)
# TODO: changes for attn_mask and key_padding_mask
else:
kv = x
if self.deep_prompt:
deep_prompt_embedding = self.deep_prompt_embedding(x, batch_first=(self.batch_first and self._torch_nn_new_interface), **kwargs)
if self.norm_first:
deep_prompt_embedding = self.norm1(deep_prompt_embedding)
kv = torch.cat([deep_prompt_embedding, kv], dim=1 if (self.batch_first and self._torch_nn_new_interface) else 0)
if attn_mask is not None:
L, S = attn_mask.shape
pe_length = deep_prompt_embedding.shape[1 if
(self.batch_first and self._torch_nn_new_interface) else 0] # length, bs, hidden_size
attn_mask = torch.cat([torch.zeros((L, pe_length), dtype=attn_mask.dtype, device=attn_mask.device), attn_mask], dim=1)
if key_padding_mask is not None:
if self.batch_first and self._torch_nn_new_interface:
bs, pe_length = deep_prompt_embedding.shape[:2]
else:
pe_length, bs = deep_prompt_embedding.shape[:2]
key_padding_mask = torch.cat(
[torch.zeros((bs, pe_length), dtype=key_padding_mask.dtype, device=key_padding_mask.device), key_padding_mask], dim=1)
x = self.self_attn(x, kv, kv,
attn_mask=attn_mask,
key_padding_mask=key_padding_mask,
need_weights=False)[0]
x = self.drop_path1(self.dropout1(x))
if self.layer_scale:
x = self.gamma_1 * x
return x
# feed forward block
def _ff_block(self, x: Tensor, **kwargs) -> Tensor:
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
x = self.drop_path2(self.dropout2(x))
if self.layer_scale:
x = self.gamma_2 * x
return x
|