File size: 19,126 Bytes
32b542e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 |
import torch
from torch import nn
import torch.nn.functional as F
from typing import Optional, Any, Union, Callable
from torch import Tensor
from .create_act import get_act_layer, get_activation
from timm.models.layers import DropPath
from .layer_norm import LayerNorm
from .pe_encoder import DeepPrompt
from uniperceiver.task_moe.layer import TaskMoE
from uniperceiver.utils import comm
from functools import partial
import math
from uniperceiver.modeling.layers import FP16LayerNorm
from torch.cuda.amp import autocast
class MoETransformerEncoderLayer(nn.Module):
r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
This standard encoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
activation: the activation function of the intermediate layer, can be a string
("relu" or "gelu") or a unary callable. Default: relu
layer_norm_eps: the eps value in layer normalization components (default=1e-5).
batch_first: If ``True``, then the input and output tensors are provided
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
norm_first: if ``True``, layer norm is done prior to attention and feedforward
operations, respectivaly. Otherwise it's done after. Default: ``False`` (after).
Examples::
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> src = torch.rand(10, 32, 512)
>>> out = encoder_layer(src)
Alternatively, when ``batch_first`` is ``True``:
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
>>> src = torch.rand(32, 10, 512)
>>> out = encoder_layer(src)
Fast path:
forward() will use a special optimized implementation if all of the following
conditions are met:
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor
argument ``requires_grad``
- training is disabled (using ``.eval()``)
- batch_first is ``True`` and the input is batched (i.e., ``src.dim() == 3``)
- norm_first is ``False`` (this restriction may be loosened in the future)
- activation is one of: ``"relu"``, ``"gelu"``, ``torch.functional.relu``, or ``torch.functional.gelu``
- at most one of ``src_mask`` and ``src_key_padding_mask`` is passed
- if src is a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_, neither ``src_mask``
nor ``src_key_padding_mask`` is passed
- the two ``LayerNorm`` instances have a consistent ``eps`` value (this will naturally be the case
unless the caller has manually modified one without modifying the other)
If the optimized implementation is in use, a
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be
passed for ``src`` to represent padding more efficiently than using a padding
mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ will be
returned, and an additional speedup proportional to the fraction of the input that
is padding can be expected.
"""
__constants__ = ['batch_first', 'norm_first'] # we inherit this variable from pytorch's code for jit
def __init__(self, d_model: int, nhead: int, dim_feedforward: int = 2048, dropout: float = 0.1, drop_path_ratio: float = 0.1,
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu, layer_scale: bool = False, ls_init_values: float = 1e-3,
layer_norm_eps: float = 1e-5, batch_first: bool = False, norm_first: bool = False,
device=None, dtype=None, cfg: dict = None, ffn_moe: bool = False, attn_moe: bool = False) -> None:
if batch_first and comm.is_main_process():
print(f'set batch_first to \'False\' to support torch >= 1.12!')
batch_first = False
factory_kwargs = {}
super(MoETransformerEncoderLayer, self).__init__()
self.cfg = cfg
# The interface of nn.MultiheadAttention changed since torch 1.9.0.
_torch_version_main = torch.__version__.split('.')[:2]
if (int(_torch_version_main[0]) >= 1) and (int(_torch_version_main[1])) >= 9:
self._torch_nn_new_interface = True
else:
self._torch_nn_new_interface = False
# for moe
self.ffn_moe = ffn_moe and self.cfg.MOE.MOE
self.attn_moe = attn_moe and self.cfg.MOE.MOE
if self.cfg.MOE.MOE:
# assert self.ffn_moe and self.attn_moe
# data-independent moe
if self.cfg.MOE.MOE_TYPE in ['attribute']:
MoE_layer = partial(
TaskMoE,
num_experts=cfg.MOE.NUM_EXPERTS,
k=cfg.MOE.TOP_K,
capacity_factor=cfg.MOE.CAPACITY_FACTOR,
eval_capacity_factor=cfg.MOE.EVAL_MIN_CAPACITY,
min_capacity=cfg.MOE.MIN_CAPACITY,
noisy_gate_policy=cfg.MOE.NOISY_GATE_POLICY,
use_rts=cfg.MOE.USE_RTS,
use_tutel=cfg.MOE.USE_TUTEL,
cfg=cfg,
)
else:
raise NotImplementedError(f'{self.cfg.MOE.MOE_TYPE}')
self.self_attn = MoEAttentionBlock(d_model, nhead, attention_probs_dropout_prob=dropout, cfg=cfg, moe_layer=MoE_layer, attn_moe=attn_moe)
self.batch_first = batch_first
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward, **factory_kwargs)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model, **factory_kwargs)
if self.ffn_moe:
self.linear1 = MoE_layer(hidden_size=d_model, expert=self.linear1)
self.linear2 = MoE_layer(hidden_size=d_model, expert=self.linear2)
self.norm_first = norm_first
if self.cfg.SOLVER.FUSED_LAYERNORM:
self.norm1 = LayerNorm(d_model, eps=layer_norm_eps)
self.norm2 = LayerNorm(d_model, eps=layer_norm_eps)
elif self.cfg.SOLVER.FORCE_LN_FP16:
self.norm1 = FP16LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
self.norm2 = FP16LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
else:
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.drop_path1 = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()
self.drop_path2 = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()
self.layer_scale = layer_scale
if self.layer_scale:
self.gamma_1 = nn.Parameter(ls_init_values * torch.ones((d_model)),requires_grad=True)
self.gamma_2 = nn.Parameter(ls_init_values * torch.ones((d_model)),requires_grad=True)
# Legacy string support for activation function.
if isinstance(activation, str):
activation = get_activation(activation)
self.activation = activation
# prompt embedding setup
self.deep_prompt = self.cfg.MODEL.PROMPT_EMBED.DEEP_PROMPT
if self.deep_prompt:
self.deep_prompt_embedding = DeepPrompt(cfg)
def __setstate__(self, state):
if 'activation' not in state:
state['activation'] = F.relu
super(MoETransformerEncoderLayer, self).__setstate__(state)
def forward(self,
src: Tensor,
src_mask: Optional[Tensor] = None,
src_key_padding_mask: Optional[Tensor] = None,
history_states: Optional[Tensor] = None,
**kwargs) -> Tensor:
r"""Pass the input through the encoder layer.
Args:
src: the sequence to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
# see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf
x = src
if self.norm_first:
history_states_norm = history_states if (history_states is None) else self.norm1(history_states)
x = x + self._sa_block(self.norm1(x), src_mask, src_key_padding_mask, history_states=history_states_norm, **kwargs)
x = x + self._ff_block(self.norm2(x), **kwargs)
else:
x = self.norm1(x + self._sa_block(x, src_mask, src_key_padding_mask, history_states=history_states, **kwargs))
x = self.norm2(x + self._ff_block(x), **kwargs)
return x
# self-attention block
def _sa_block(self, x: Tensor, attn_mask: Optional[Tensor], key_padding_mask: Optional[Tensor], history_states: Optional[Tensor],
**kwargs) -> Tensor:
if history_states is not None:
kv = torch.cat(
[history_states, x],
dim=1
)
# TODO: changes for attn_mask and key_padding_mask
else:
kv = None
if self.deep_prompt:
deep_prompt_embedding = self.deep_prompt_embedding(x, batch_first=True, **kwargs)
if self.norm_first:
deep_prompt_embedding = self.norm1(deep_prompt_embedding)
kv = torch.cat([deep_prompt_embedding, x], dim=1) if kv is None else torch.cat([deep_prompt_embedding, kv], dim=1)
if 'sample_info' in kwargs:
pe_length = deep_prompt_embedding.shape[1]
kwargs['sample_info']['pe_length'] = pe_length
if attn_mask is not None:
L, S = attn_mask.shape
pe_length = deep_prompt_embedding.shape[1] # length, bs, hidden_size
attn_mask = torch.cat([torch.zeros((L, pe_length), dtype=attn_mask.dtype, device=attn_mask.device), attn_mask], dim=1)
if key_padding_mask is not None:
bs, pe_length = deep_prompt_embedding.shape[:2]
key_padding_mask = torch.cat(
[torch.zeros((bs, pe_length), dtype=key_padding_mask.dtype, device=key_padding_mask.device), key_padding_mask], dim=1)
x, _ = self.self_attn(x, history_states=kv, attn_mask=attn_mask, key_padding_mask=key_padding_mask, **kwargs)
x = self.drop_path1(self.dropout1(x))
if self.layer_scale:
if self.cfg.MODEL.LAYER_SCALE_FP32:
x = self.gamma_1 * x
else:
x = self.gamma_1.to(x.dtype) * x
return x
# feed forward block
def _ff_block(self, x: Tensor, **kwargs) -> Tensor:
if self.ffn_moe:
x, gate_decision = self.linear1(x, **kwargs)
if not self.cfg.MOE.FFN_SHARE_GATE_DECISION:
gate_decision = None
x, _ = self.linear2(self.dropout(self.activation(x)), gate_decision=gate_decision, **kwargs)
else:
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
x = self.drop_path2(self.dropout2(x))
if self.layer_scale:
if self.cfg.MODEL.LAYER_SCALE_FP32:
x = self.gamma_2 * x
else:
x = self.gamma_2.to(x.dtype) * x
return x
class MoEAttentionBlock(nn.Module):
def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, cfg, moe_layer=None, attn_moe=False):
super(MoEAttentionBlock, self).__init__()
self.cfg = cfg
if hidden_size % num_attention_heads != 0:
raise ValueError("The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (hidden_size, num_attention_heads))
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.attention_head_size = int(hidden_size / num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.qkv_bias = cfg.MODEL.BERT.QKV_BIAS
self.unify_qkv = cfg.MODEL.BERT.UNIFY_QKV
if not cfg.MODEL.BERT.UNIFY_QKV:
self.query = nn.Linear(hidden_size, self.all_head_size, bias=self.qkv_bias)
self.key = nn.Linear(hidden_size, self.all_head_size, bias=self.qkv_bias)
self.value = nn.Linear(hidden_size, self.all_head_size, bias=self.qkv_bias)
else:
self.qkv_proj = nn.Linear(hidden_size, self.all_head_size * 3, bias=self.qkv_bias)
self.dense = nn.Linear(hidden_size, self.all_head_size)
self.dropout = nn.Dropout(attention_probs_dropout_prob)
self.attn_moe = attn_moe
if self.attn_moe:
if not cfg.MODEL.BERT.UNIFY_QKV:
raise NotADirectoryError('use UNIFY_QKV=True please')
else:
self.qkv_proj = moe_layer(hidden_size=hidden_size, expert=self.qkv_proj)
self.dense = moe_layer(hidden_size=hidden_size, expert=self.dense)
self.scale_multi_before = cfg.MODEL.BERT.SCALE_MULTI_BEFORE
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
x = x.view(*new_x_shape)
shape_list = list(range(len(new_x_shape)))
shape_list[-2], shape_list[-3] = shape_list[-3], shape_list[-2]
return x.permute(shape_list)
#return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attn_mask, key_padding_mask, history_states=None, **kwargs):
if attn_mask is None and key_padding_mask is None:
attention_mask = None
else:
# attn_mask [L, S] key_padding_mask[N, S]
if attn_mask is not None and key_padding_mask is not None:
attention_mask = torch.logical_or(attn_mask.unsqueeze(0).bool(), key_padding_mask.unsqueeze(1).bool())
elif attn_mask is not None:
attention_mask = attn_mask.unsqueeze(0)
else:
attention_mask = key_padding_mask.unsqueeze(1)
if attention_mask is not None:
attention_mask = attention_mask.unsqueeze(1) * -10000.0
if self.unify_qkv:
if history_states is None:
B, N, C = hidden_states.shape
if self.attn_moe:
# qkv, _, _ = self.self.qkv_proj(hidden_states)
hidden_states, gate_decision = self.qkv_proj(hidden_states, **kwargs)
mixed_query_layer, mixed_key_layer, mixed_value_layer =hidden_states.chunk(3, dim=-1)
else:
mixed_query_layer, mixed_key_layer, mixed_value_layer = self.qkv_proj(hidden_states).chunk(3, dim=-1)
else:
# usually inference with history embedding
if self.attn_moe:
mixed_query_layer, gate_decision = self.qkv_proj(hidden_states, mode='q', **kwargs)
history_states = self.qkv_proj(history_states, mode='kv', gate_decision=gate_decision, **kwargs)[0]
mixed_key_layer, mixed_value_layer = history_states.chunk(2, dim=-1)
else:
# query
_start = 0
_end = self.hidden_size
mixed_query_layer = F.linear(hidden_states,
self.qkv_proj.weight[_start:_end, :],
bias=None if self.qkv_proj.bias is None else self.qkv_proj.bias[_start:_end])
# key and value
# torch.equal(key, value)
_start = self.hidden_size
mixed_key_layer, mixed_value_layer = F.linear(history_states,
self.qkv_proj.weight[_start:, :],
bias=None if self.qkv_proj.bias is None else self.qkv_proj.bias[_start:]).chunk(
2, dim=-1)
else:
raise NotImplementedError('please use unify qkv_proj')
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
if self.scale_multi_before:
attention_scores = torch.matmul(query_layer / math.sqrt(self.attention_head_size), key_layer.transpose(-1, -2))
else:
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
if self.cfg.SOLVER.FORCE_SOFTMAX_FP16:
with autocast(enabled=False):
attention_probs = F.softmax(attention_scores.half(), dim=-1)
else:
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
shape_list = list(range(len(context_layer.shape)))
shape_list[-2], shape_list[-3] = shape_list[-3], shape_list[-2]
context_layer = context_layer.permute(shape_list).contiguous()
#context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size, )
context_layer = context_layer.view(*new_context_layer_shape)
if self.attn_moe:
context_layer, _ = self.dense(context_layer, gate_decision=gate_decision, **kwargs)
else:
context_layer = self.dense(context_layer)
return context_layer, attention_probs
|