File size: 8,983 Bytes
32b542e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# modified from https://github.com/NVIDIA/apex/blob/master/apex/optimizers/fused_lamb.py

import torch

from apex.multi_tensor_apply import multi_tensor_applier
class LAMB(torch.optim.Optimizer):
    """Implements LAMB algorithm.

    Currently GPU-only.  Requires Apex to be installed via
    ``pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./``.

    This version of fused LAMB implements 2 fusions.

      * Fusion of the LAMB update's elementwise operations
      * A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches.

    :class:`apex.optimizers.FusedLAMB`'s usage is identical to any ordinary Pytorch optimizer::

        opt = apex.optimizers.FusedLAMB(model.parameters(), lr = ....)
        ...
        opt.step()

    :class:`apex.optimizers.FusedLAMB` may be used with or without Amp.  If you wish to use :class:`FusedLAMB` with Amp,
    you may choose any ``opt_level``::

        opt = apex.optimizers.FusedLAMB(model.parameters(), lr = ....)
        model, opt = amp.initialize(model, opt, opt_level="O0" or "O1 or "O2")
        ...
        opt.step()

    In general, ``opt_level="O1"`` is recommended.

    LAMB was proposed in `Large Batch Optimization for Deep Learning: Training BERT in 76 minutes`_.

    Arguments:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups.
        lr (float, optional): learning rate. (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its norm. (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability. (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        amsgrad (boolean, optional): whether to use the AMSGrad variant of this
            algorithm from the paper `On the Convergence of Adam and Beyond`_
            NOT SUPPORTED now! (default: False)
        adam_w_mode (boolean, optional): Apply L2 regularization or weight decay
            True for decoupled weight decay(also known as AdamW) (default: True)
        grad_averaging (bool, optional): whether apply (1-beta2) to grad when
            calculating running averages of gradient. (default: True)
        set_grad_none (bool, optional): whether set grad to None when zero_grad()
            method is called. (default: True)
        max_grad_norm (float, optional): value used to clip global grad norm
            (default: 1.0)
        use_nvlamb (boolean, optional): Apply adaptive learning rate to 0.0
            weight decay parameter (default: False)

    .. _Large Batch Optimization for Deep Learning - Training BERT in 76 minutes:
        https://arxiv.org/abs/1904.00962
    .. _On the Convergence of Adam and Beyond:
        https://openreview.net/forum?id=ryQu7f-RZ
    """
    def __init__(self,
                 params,
                 lr=1e-3,
                 bias_correction=True,
                 betas=(0.9, 0.999),
                 eps=1e-6,
                 weight_decay=0.01,
                 amsgrad=False,
                 adam_w_mode=True,
                 grad_averaging=True,
                 set_grad_none=True,
                 max_grad_norm=1.0,
                 use_nvlamb=False):
        if amsgrad:
            raise RuntimeError('FusedLAMB does not support the AMSGrad variant.')
        defaults = dict(lr=lr,
                        bias_correction=bias_correction,
                        betas=betas,
                        eps=eps,
                        weight_decay=weight_decay,
                        grad_averaging=grad_averaging,
                        max_grad_norm=max_grad_norm)
        super(LAMB, self).__init__(params, defaults)
        if multi_tensor_applier.available:
            import amp_C
            self.multi_tensor_l2norm = amp_C.multi_tensor_l2norm
            # Skip buffer
            self._dummy_overflow_buf = torch.tensor([0], dtype=torch.int, device=self.param_groups[0]["params"][0].device)
            self.multi_tensor_lamb = amp_C.multi_tensor_lamb
        else:
            raise RuntimeError('apex.optimizers.FusedLAMB requires cuda extensions')

        self.adam_w_mode = 1 if adam_w_mode else 0
        self.set_grad_none = set_grad_none
        self.use_nvlamb = use_nvlamb

    def zero_grad(self):
        if self.set_grad_none:
            for group in self.param_groups:
                for p in group['params']:
                    p.grad = None
        else:
            super(LAMB, self).zero_grad()

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        # create separate grad lists for fp32 and fp16 params
        g_all_32, g_all_16 = [], []
        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                if p.dtype == torch.float32:
                    g_all_32.append(p.grad.data)
                elif p.dtype == torch.float16:
                    g_all_16.append(p.grad.data)
                else:
                    raise RuntimeError('FusedLAMB only support fp16 and fp32.')

        device = self.param_groups[0]["params"][0].device
        g_norm_32, g_norm_16 = torch.zeros(1, device=device), torch.zeros(1, device=device)
        # compute grad norm for two lists
        if len(g_all_32) > 0:
            g_norm_32 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_32], False)[0]
        if len(g_all_16) > 0:
            g_norm_16 = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [g_all_16], False)[0]

        # blend two grad norms to get global grad norm
        global_grad_norm = multi_tensor_applier(self.multi_tensor_l2norm, self._dummy_overflow_buf, [[g_norm_32, g_norm_16]], False)[0]
        max_grad_norm = self.defaults['max_grad_norm']

        for group in self.param_groups:
            bias_correction = 1 if group['bias_correction'] else 0
            beta1, beta2 = group['betas']
            grad_averaging = 1 if group['grad_averaging'] else 0

            # assume same step across group now to simplify things
            # per parameter step can be easily support by making it tensor, or pass list into kernel
            if 'step' in group:
                group['step'] += 1
            else:
                group['step'] = 1

            # create lists for multi-tensor apply
            g_16, p_16, m_16, v_16 = [], [], [], []
            g_32, p_32, m_32, v_32 = [], [], [], []

            for p in group['params']:
                if p.grad is None:
                    continue
                if p.grad.data.is_sparse:
                    raise RuntimeError('FusedLAMB does not support sparse gradients, please consider SparseAdam instead')

                state = self.state[p]
                # State initialization
                if len(state) == 0:
                    # Exponential moving average of gradient values
                    state['exp_avg'] = torch.zeros_like(p.data)
                    # Exponential moving average of gradient values
                    state['exp_avg_sq'] = torch.zeros_like(p.data)

                if p.dtype == torch.float16:
                    g_16.append(p.grad.data)
                    p_16.append(p.data)
                    m_16.append(state['exp_avg'])
                    v_16.append(state['exp_avg_sq'])
                elif p.dtype == torch.float32:
                    g_32.append(p.grad.data)
                    p_32.append(p.data)
                    m_32.append(state['exp_avg'])
                    v_32.append(state['exp_avg_sq'])
                else:
                    raise RuntimeError('FusedLAMB only support fp16 and fp32.')

            if (len(g_16) > 0):
                multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16], group['lr'], beta1, beta2,
                                     group['eps'], group['step'], bias_correction, group['weight_decay'], grad_averaging, self.adam_w_mode,
                                     global_grad_norm, max_grad_norm, self.use_nvlamb)
            if (len(g_32) > 0):
                multi_tensor_applier(self.multi_tensor_lamb, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32], group['lr'], beta1, beta2,
                                     group['eps'], group['step'], bias_correction, group['weight_decay'], grad_averaging, self.adam_w_mode,
                                     global_grad_norm, max_grad_norm, self.use_nvlamb)

        return loss