File size: 6,545 Bytes
32b542e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
'''
Copyright 2020 The Microsoft DeepSpeed Team
'''

import torch
import copy
from .gate import one_hot_with_dtype
from uniperceiver.utils import comm

import torch.nn.functional as F

from torch.cuda.amp import autocast


class FusedExperts(torch.nn.Module):
    def __init__(self, expert, cfg,  num_local_experts=1):
        super(FusedExperts, self).__init__()
        self.cfg = cfg

        self.deepspeed_experts = torch.nn.ModuleList(
            [copy.deepcopy(expert) for i in range(num_local_experts)])
        self.num_local_experts = num_local_experts

        self.bias_merge = self.deepspeed_experts[0].bias is not None


    def top1_expert_forward(self, x, indice, gate, mode=None, **kwargs):
        assert  mode is None, "unified qkv inference is not supported for top1"
        if indice.size(0)== 1:
            #unimodal
            x = self.deepspeed_experts[indice[0]](x) * gate[0].to(x)
        elif indice.size(0) == 2:
            # mulmodal
            data1_length = kwargs['sample_info']['data_cum_length'][1]
            x = torch.cat([
                self.deepspeed_experts[indice[0]](x[:, :data1_length, :]) * gate[0].to(x),
                self.deepspeed_experts[indice[1]](x[:, data1_length:, :]) * gate[1].to(x)
            ],
                          dim=1)

        else:
            raise NotImplementedError('only support one or two modality')
        return x

    def mergelayer(self, x,  index1, index2, gate1, gate2, mode=None):
        
        if not self.cfg.SOLVER.FORCE_EXPERT_ADDING_FP16:
            if mode == 'q':
                # hidden_states
                _start = 0
                _end = self.deepspeed_experts[index1].weight.shape[0] // 3
                return F.linear(
                    x,
                    self.deepspeed_experts[index1].weight[_start:_end, :] * gate1 +
                    self.deepspeed_experts[index2].weight[_start:_end, :] * gate2,
                    bias=self.deepspeed_experts[index1].bias[_start:_end] * gate1 +
                    self.deepspeed_experts[index2].bias[_start:_end] * gate2
                    if self.bias_merge else None,
                )

            elif mode == 'kv':
                # history_states
                _start =  self.deepspeed_experts[index1].weight.shape[0] // 3

                return F.linear(
                    x,
                    self.deepspeed_experts[index1].weight[_start:, :] * gate1 +
                    self.deepspeed_experts[index2].weight[_start:, :] * gate2,
                    bias=self.deepspeed_experts[index1].bias[_start:] * gate1 +
                    self.deepspeed_experts[index2].bias[_start:] * gate2
                    if self.bias_merge else None,
                )

            else:

                return F.linear(
                    x,
                    self.deepspeed_experts[index1].weight * gate1 +
                    self.deepspeed_experts[index2].weight * gate2,
                    bias=self.deepspeed_experts[index1].bias * gate1 +
                    self.deepspeed_experts[index2].bias * gate2 if self.bias_merge else None,
                )
        else:
            if mode == 'q':
                # hidden_states
                _start = 0
                _end = self.deepspeed_experts[index1].weight.shape[0] // 3
                return F.linear(
                    x,
                    self.deepspeed_experts[index1].weight[_start:_end, :].half() * gate1 +
                    self.deepspeed_experts[index2].weight[_start:_end, :].half() * gate2,
                    bias=self.deepspeed_experts[index1].bias[_start:_end].half() * gate1 +
                    self.deepspeed_experts[index2].bias[_start:_end].half() * gate2 if self.bias_merge else None,
                )

            elif mode == 'kv':
                # history_states
                _start = self.deepspeed_experts[index1].weight.shape[0] // 3

                return F.linear(
                    x,
                    self.deepspeed_experts[index1].weight[_start:, :].half() * gate1 +
                    self.deepspeed_experts[index2].weight[_start:, :].half() * gate2,
                    bias=self.deepspeed_experts[index1].bias[_start:].half() * gate1 +
                    self.deepspeed_experts[index2].bias[_start:].half() * gate2 if self.bias_merge else None,
                )

            else:

                return F.linear(
                    x,
                    self.deepspeed_experts[index1].weight.half() * gate1 + self.deepspeed_experts[index2].weight.half() * gate2,
                    bias=self.deepspeed_experts[index1].bias.half() * gate1 +
                    self.deepspeed_experts[index2].bias.half() * gate2 if self.bias_merge else None,
                )
        

    def top2_expert_forward(self, x, indices, gates, mode=None, **kwargs):

        # caption eval mode
        if comm._CAPTION_GEN_MODE and x.shape[1] == 1:
            #
            return self.mergelayer(x,
                                   indices[0][1], indices[1][1],
                                   gates[0][1], gates[1][1], mode=mode)

        # unimodal
        if indices[0].size(0) == 1:
            x = self.mergelayer(x, indices[0][0], indices[1][0], gates[0][0], gates[1][0], mode=mode)
        elif indices[0].size(0) == 2:
            data1_length = kwargs['sample_info']['data_cum_length'][1]
            if mode == 'kv' and kwargs['sample_info'].get('pe_length', 0) > 0:
                # may have prompt embedding for kv embedding
                data1_length += kwargs['sample_info'].get('pe_length', 0)
            x = torch.cat([
                self.mergelayer(x[:, :data1_length, :], indices[0][0], indices[1][0], gates[0][0], gates[1][0], mode=mode),
                self.mergelayer(x[:, data1_length:, :], indices[0][1], indices[1][1], gates[0][1], gates[1][1], mode=mode)
            ],
                          dim=1)

        else:
            raise NotImplementedError('only support one or two modality')
        return x

    def forward(self, hidden_states, top_indices=None, gates=None, **kwargs):

        # top1
        if len(top_indices) == 1:
            out = self.top1_expert_forward(hidden_states, top_indices[0], gates[0], **kwargs)

        # top2
        elif len(top_indices) == 2:
            out = self.top2_expert_forward(hidden_states, top_indices, gates, **kwargs)

        else:
            raise NotImplementedError("only support top1 and top2 ")



        assert out.shape[1] == hidden_states.shape[1]

        return out