|
|
|
|
|
|
|
import os |
|
import math |
|
import torch |
|
import torch.distributed as dist |
|
from torch.utils.data.sampler import Sampler |
|
import random |
|
from uniperceiver.utils import comm |
|
import itertools |
|
|
|
class DistributedSampler(Sampler): |
|
"""Sampler that restricts data loading to a subset of the dataset. |
|
It is especially useful in conjunction with |
|
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each |
|
process can pass a DistributedSampler instance as a DataLoader sampler, |
|
and load a subset of the original dataset that is exclusive to it. |
|
.. note:: |
|
Dataset is assumed to be of constant size. |
|
Arguments: |
|
dataset: Dataset used for sampling. |
|
num_replicas (optional): Number of processes participating in |
|
distributed training. |
|
rank (optional): Rank of the current process within num_replicas. |
|
""" |
|
|
|
def __init__(self, dataset, num_replicas=None, rank=None, local_rank=None, local_size=None, shuffle=True, dataset_repeat=1): |
|
if num_replicas is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
num_replicas = dist.get_world_size() |
|
if rank is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
rank = dist.get_rank() |
|
self.dataset = dataset |
|
self.num_replicas = num_replicas |
|
self.rank = rank |
|
self.epoch = 0 |
|
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) |
|
self.total_size = self.num_samples * self.num_replicas |
|
self.shuffle = shuffle |
|
self.dataset_repeat = dataset_repeat |
|
|
|
def __iter__(self): |
|
if self.shuffle: |
|
|
|
g = torch.Generator() |
|
g.manual_seed(self.epoch) |
|
indices = torch.randperm(len(self.dataset), generator=g).tolist() |
|
else: |
|
indices = torch.arange(len(self.dataset)).tolist() |
|
|
|
|
|
indices += indices[: (self.total_size - len(indices))] |
|
assert len(indices) == self.total_size |
|
|
|
|
|
offset = self.num_samples * self.rank |
|
indices = indices[offset : offset + self.num_samples] |
|
assert len(indices) == self.num_samples |
|
|
|
repeated_indices = [] |
|
for _ in range(self.dataset_repeat): |
|
repeated_indices += torch.tensor(indices)[torch.randperm(len(indices), generator=g)].tolist() |
|
|
|
return iter(repeated_indices) |
|
|
|
def __len__(self): |
|
return self.num_samples * self.dataset_repeat |
|
|
|
def set_epoch(self, epoch): |
|
self.epoch = epoch |
|
|
|
class TrainingSampler(Sampler): |
|
""" |
|
In training, we only care about the "infinite stream" of training data. |
|
So this sampler produces an infinite stream of indices and |
|
all workers cooperate to correctly shuffle the indices and sample different indices. |
|
|
|
The samplers in each worker effectively produces `indices[worker_id::num_workers]` |
|
where `indices` is an infinite stream of indices consisting of |
|
`shuffle(range(size)) + shuffle(range(size)) + ...` (if shuffle is True) |
|
or `range(size) + range(size) + ...` (if shuffle is False) |
|
""" |
|
|
|
def __init__(self, dataset, num_replicas=None, rank=None, local_rank=None, local_size=None, shuffle=True, seed = None): |
|
if num_replicas is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
num_replicas = dist.get_world_size() |
|
if rank is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
rank = dist.get_rank() |
|
self.dataset = dataset |
|
self.num_replicas = num_replicas |
|
self.rank = rank |
|
self.epoch = 0 |
|
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) -1 |
|
self.total_size = len(dataset) |
|
self.shuffle = shuffle |
|
|
|
if seed is None: |
|
seed = comm.shared_random_seed() |
|
self.seed = int(seed) |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def __iter__(self): |
|
start = self.rank |
|
yield from itertools.islice(self._infinite_indices(), start, None, self.num_replicas) |
|
|
|
def _infinite_indices(self): |
|
g = torch.Generator() |
|
g.manual_seed(self.seed) |
|
while True: |
|
if self.shuffle: |
|
yield from torch.randperm(self.total_size, generator=g).tolist() |
|
else: |
|
yield from torch.arange(self.total_size).tolist() |
|
|
|
class NaiveSampler(Sampler): |
|
""" |
|
In training, we only care about the "infinite stream" of training data. |
|
So this sampler produces an infinite stream of indices and |
|
all workers cooperate to correctly shuffle the indices and sample different indices. |
|
|
|
The samplers in each worker effectively produces `indices[worker_id::num_workers]` |
|
where `indices` is an infinite stream of indices consisting of |
|
`shuffle(range(size)) + shuffle(range(size)) + ...` (if shuffle is True) |
|
or `range(size) + range(size) + ...` (if shuffle is False) |
|
|
|
for bookswiki node-block cache |
|
|
|
""" |
|
|
|
def __init__(self, dataset, num_replicas=None, rank=None, local_rank=None, local_size=None, shuffle=True, seed = None): |
|
if num_replicas is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
num_replicas = dist.get_world_size() // comm.get_local_size() |
|
if rank is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
rank = comm.get_rank() // comm.get_local_size() |
|
self.dataset = dataset |
|
self.num_replicas = num_replicas |
|
self.rank = rank |
|
self.epoch = 0 |
|
self.num_samples =int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) -1 |
|
self.total_size = len(dataset) |
|
self.shuffle = shuffle |
|
|
|
if seed is None: |
|
seed = comm.shared_random_seed() |
|
self.seed = int(seed) |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def __iter__(self): |
|
start = self.rank |
|
yield from itertools.islice(self._infinite_indices(), start, None, self.num_replicas) |
|
|
|
def _infinite_indices(self): |
|
g = torch.Generator() |
|
g.manual_seed(self.seed) |
|
while True: |
|
if self.shuffle: |
|
yield from torch.randperm(self.total_size, generator=g).tolist() |
|
else: |
|
yield from torch.arange(self.total_size).tolist() |
|
|
|
class NodeDistributedSampler(Sampler): |
|
"""Sampler that restricts data loading to a subset of the dataset. |
|
It is especially useful in conjunction with |
|
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each |
|
process can pass a DistributedSampler instance as a DataLoader sampler, |
|
and load a subset of the original dataset that is exclusive to it. |
|
.. note:: |
|
Dataset is assumed to be of constant size. |
|
Arguments: |
|
dataset: Dataset used for sampling. |
|
num_replicas (optional): Number of processes participating in |
|
distributed training. |
|
rank (optional): Rank of the current process within num_replicas. |
|
""" |
|
|
|
def __init__(self, dataset, num_replicas=None, rank=None, local_rank=None, local_size=None, shuffle=True): |
|
if num_replicas is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
num_replicas = dist.get_world_size() |
|
if rank is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
rank = dist.get_rank() |
|
if local_rank is None: |
|
local_rank = int(os.environ.get('LOCAL_RANK', 0)) |
|
if local_size is None: |
|
local_size = int(os.environ.get('LOCAL_SIZE', 1)) |
|
self.dataset = dataset |
|
self.shuffle = shuffle |
|
self.num_replicas = num_replicas |
|
self.num_parts = local_size |
|
self.rank = rank |
|
self.local_rank = local_rank |
|
self.epoch = 0 |
|
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) |
|
self.total_size = self.num_samples * self.num_replicas |
|
|
|
self.total_size_parts = self.num_samples * self.num_replicas // self.num_parts |
|
|
|
self.indices = [i for i in range(len(self.dataset)) if i % self.num_parts == self.local_rank] |
|
|
|
seed = comm.shared_random_seed() |
|
self.seed = int(seed) |
|
|
|
def __iter__(self): |
|
start = self.rank // self.num_parts |
|
yield from itertools.islice(self._infinite_indices(), start, None, self.num_replicas // self.num_parts) |
|
|
|
def _infinite_indices(self): |
|
g = torch.Generator() |
|
g.manual_seed(self.seed) |
|
while True: |
|
if self.shuffle: |
|
yield from torch.tensor(self.indices)[torch.randperm(len(self.indices), generator=g)].tolist() |
|
else: |
|
yield from self.indices |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def set_epoch(self, epoch): |
|
self.epoch = epoch |
|
|
|
|
|
|
|
|
|
|
|
|
|
class NodeDistributedSampler_bak(Sampler): |
|
"""Sampler that restricts data loading to a subset of the dataset. |
|
It is especially useful in conjunction with |
|
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each |
|
process can pass a DistributedSampler instance as a DataLoader sampler, |
|
and load a subset of the original dataset that is exclusive to it. |
|
.. note:: |
|
Dataset is assumed to be of constant size. |
|
Arguments: |
|
dataset: Dataset used for sampling. |
|
num_replicas (optional): Number of processes participating in |
|
distributed training. |
|
rank (optional): Rank of the current process within num_replicas. |
|
""" |
|
|
|
def __init__(self, dataset, num_replicas=None, rank=None, local_rank=None, local_size=None, shuffle=True): |
|
if num_replicas is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
num_replicas = dist.get_world_size() |
|
if rank is None: |
|
if not dist.is_available(): |
|
raise RuntimeError("Requires distributed package to be available") |
|
rank = dist.get_rank() |
|
if local_rank is None: |
|
local_rank = int(os.environ.get('LOCAL_RANK', 0)) |
|
if local_size is None: |
|
local_size = int(os.environ.get('LOCAL_SIZE', 1)) |
|
self.dataset = dataset |
|
self.shuffle = shuffle |
|
self.num_replicas = num_replicas |
|
self.num_parts = local_size |
|
self.rank = rank |
|
self.local_rank = local_rank |
|
self.epoch = 0 |
|
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) |
|
self.total_size = self.num_samples * self.num_replicas |
|
|
|
self.total_size_parts = self.num_samples * self.num_replicas // self.num_parts |
|
|
|
def __iter__(self): |
|
if self.shuffle: |
|
|
|
g = torch.Generator() |
|
g.manual_seed(self.epoch) |
|
indices = torch.randperm(len(self.dataset), generator=g).tolist() |
|
else: |
|
indices = torch.arange(len(self.dataset)).tolist() |
|
indices = [i for i in indices if i % self.num_parts == self.local_rank] |
|
|
|
|
|
indices += indices[:(self.total_size_parts - len(indices))] |
|
assert len(indices) == self.total_size_parts |
|
|
|
|
|
indices = indices[self.rank // self.num_parts:self.total_size_parts:self.num_replicas // self.num_parts] |
|
assert len(indices) == self.num_samples |
|
|
|
return iter(indices) |
|
|
|
def __len__(self): |
|
return self.num_samples |
|
|
|
def set_epoch(self, epoch): |
|
self.epoch = epoch |