herrius's picture
Upload 259 files
32b542e
import itertools
import numpy as np
import torch
# from torch.nn.utils.rnn import pad_sequence
def pad_sequence(sequences, batch_first=False, padding_value=0.0, padding_length=None):
"""
modified from torch.nn.utils.rnn.pad_sequence
"""
# assuming trailing dimensions and type of all the Tensors
# in sequences are same and fetching those from sequences[0]
max_size = sequences[0].size()
trailing_dims = max_size[1:]
max_len = max([s.size(0) for s in sequences]) if padding_length is None else padding_length
if batch_first:
out_dims = (len(sequences), max_len) + trailing_dims
else:
out_dims = (max_len, len(sequences)) + trailing_dims
out_tensor = sequences[0].new_full(out_dims, padding_value)
for i, tensor in enumerate(sequences):
length = tensor.size(0)
# use index notation to prevent duplicate references to the tensor
if batch_first:
out_tensor[i, :length, ...] = tensor
else:
out_tensor[:length, i, ...] = tensor
return out_tensor
def pad_tensor(tensor, padding_value, use_mask, padding_length=None):
if isinstance(tensor[0], list):
tensor = list(itertools.chain.from_iterable(tensor))
out = pad_sequence(tensor, batch_first=True, padding_value=padding_value, padding_length=padding_length)
if use_mask:
lengths = [t.size(0) for t in tensor]
max_lengths = max(lengths) if padding_length is None else padding_length
mask = torch.zeros((out.size(0), max_lengths), dtype=torch.uint8)
for i, length in enumerate(lengths):
mask[i, 0:length] = 1
return out, mask
else:
return out
def dict_to_cuda(input_dict):
for key in input_dict:
if isinstance(input_dict[key], torch.Tensor):
input_dict[key] = input_dict[key].cuda(non_blocking=True)
elif isinstance(input_dict[key], dict):
input_dict[key] = dict_to_cuda(input_dict[key])
def dict_as_tensor(input_data):
if isinstance(input_data, str) or isinstance(input_data, tuple) or isinstance(input_data, int) or input_data is None:
pass
elif isinstance(input_data, dict):
for key in input_data:
input_data[key] = dict_as_tensor(input_data[key])
elif isinstance(input_data, list):
input_data = [dict_as_tensor(item) for item in input_data]
else:
input_data = torch.as_tensor(input_data)
return input_data
def boxes_to_locfeats(boxes, image_w, image_h):
image_location = np.zeros((boxes.shape[0], 5), dtype=np.float32)
image_location[:, :4] = boxes
image_location[:, 4] = (
(image_location[:, 3] - image_location[:, 1])
* (image_location[:, 2] - image_location[:, 0])
/ (float(image_w) * float(image_h))
)
image_location[:, 0] = image_location[:, 0] / float(image_w)
image_location[:, 1] = image_location[:, 1] / float(image_h)
image_location[:, 2] = image_location[:, 2] / float(image_w)
image_location[:, 3] = image_location[:, 3] / float(image_h)
return image_location
def expand_tensor(tensor, size, dim=1):
if size == 1 or tensor is None:
return tensor
tensor = tensor.unsqueeze(dim)
if dim == 0:
tensor = tensor.expand([size] + [-1] + list(tensor.shape[2:]))
tensor = tensor.reshape([-1] + list(tensor.shape[2:]))
else:
tensor = tensor.expand(list(tensor.shape[:dim]) + [size] + list(tensor.shape[dim+1:]))
tensor = tensor.reshape(list(tensor.shape[:dim-1]) + [-1] + list(tensor.shape[dim+1:]))
return tensor
def iou(anchors, gt_boxes):
"""
anchors: (N, 4) ndarray of float
gt_boxes: (K, 4) ndarray of float
overlaps: (N, K) ndarray of overlap between boxes and query_boxes
"""
N = anchors.shape[0]
K = gt_boxes.shape[0]
gt_boxes_area = (
(gt_boxes[:, 2] - gt_boxes[:, 0] + 1) * (gt_boxes[:, 3] - gt_boxes[:, 1] + 1)
).reshape(1, K)
anchors_area = (
(anchors[:, 2] - anchors[:, 0] + 1) * (anchors[:, 3] - anchors[:, 1] + 1)
).reshape(N, 1)
boxes = np.repeat(anchors.reshape(N, 1, 4), K, axis=1)
query_boxes = np.repeat(gt_boxes.reshape(1, K, 4), N, axis=0)
iw = (
np.minimum(boxes[:, :, 2], query_boxes[:, :, 2])
- np.maximum(boxes[:, :, 0], query_boxes[:, :, 0])
+ 1
)
iw[iw < 0] = 0
ih = (
np.minimum(boxes[:, :, 3], query_boxes[:, :, 3])
- np.maximum(boxes[:, :, 1], query_boxes[:, :, 1])
+ 1
)
ih[ih < 0] = 0
ua = anchors_area + gt_boxes_area - (iw * ih)
overlaps = iw * ih / ua
return overlaps
def get_max_len_from_mask(mask):
return int(mask.sum(1).max().item())
def clip_v_inputs(v_feats, spatials, image_mask):
max_len = get_max_len_from_mask(image_mask)
v_feats = v_feats[:, :max_len]
spatials = spatials[:, :max_len]
image_mask = image_mask[:, :max_len]
return v_feats, spatials, image_mask
def clip_t_inputs(input_txt, segment_ids, input_mask):
max_len = get_max_len_from_mask(input_mask)
input_txt = input_txt[:, :max_len]
segment_ids = segment_ids[:, :max_len]
input_mask = input_mask[:, :max_len]
return input_txt, segment_ids, input_mask