unit_test / uniperceiver /losses /bce_logitis.py
herrius's picture
Upload 259 files
32b542e
import torch
import torch.nn as nn
from uniperceiver.config import configurable
from .build import LOSSES_REGISTRY
@LOSSES_REGISTRY.register()
class BCEWithLogits(nn.Module):
@configurable
def __init__(self, loss_weight=1.0):
super(BCEWithLogits, self).__init__()
self.criterion = nn.BCEWithLogitsLoss(reduction="mean")
if not isinstance(loss_weight, float):
self.loss_weight = 1.0
else:
self.loss_weight = loss_weight
@classmethod
def from_config(cls, cfg):
return {
'loss_weight' : getattr(cfg.LOSSES, 'LOSS_WEIGHT', 1.0)
}
def forward(self, outputs_dict):
ret = {}
for logit, target, loss_identification in zip(outputs_dict['logits'],
outputs_dict['targets'],
outputs_dict['loss_names']):
loss = self.criterion(logit, target)
if self.loss_weight != 1.0:
loss *= self.loss_weight
loss_name = 'BCEWithLogits_Loss'
if len(loss_identification) > 0:
loss_name = loss_name+ f' ({loss_identification})'
ret.update({ loss_name: loss })
return ret