Commit
·
59d7c3f
1
Parent(s):
b8fa126
Update pipeline.py
Browse files- pipeline.py +1 -2
pipeline.py
CHANGED
@@ -42,7 +42,6 @@ class CustomPipeline(DiffusionPipeline):
|
|
42 |
self,
|
43 |
batch_size: int = 1,
|
44 |
generator: Optional[torch.Generator] = None,
|
45 |
-
eta: float = 0.0,
|
46 |
num_inference_steps: int = 50,
|
47 |
output_type: Optional[str] = "pil",
|
48 |
return_dict: bool = True,
|
@@ -89,7 +88,7 @@ class CustomPipeline(DiffusionPipeline):
|
|
89 |
# 2. predict previous mean of image x_t-1 and add variance depending on eta
|
90 |
# eta corresponds to η in paper and should be between [0, 1]
|
91 |
# do x_t -> x_t-1
|
92 |
-
image = self.scheduler.step(model_output, t, image
|
93 |
|
94 |
image = (image / 2 + 0.5).clamp(0, 1)
|
95 |
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
|
|
42 |
self,
|
43 |
batch_size: int = 1,
|
44 |
generator: Optional[torch.Generator] = None,
|
|
|
45 |
num_inference_steps: int = 50,
|
46 |
output_type: Optional[str] = "pil",
|
47 |
return_dict: bool = True,
|
|
|
88 |
# 2. predict previous mean of image x_t-1 and add variance depending on eta
|
89 |
# eta corresponds to η in paper and should be between [0, 1]
|
90 |
# do x_t -> x_t-1
|
91 |
+
image = self.scheduler.step(model_output, t, image).prev_sample
|
92 |
|
93 |
image = (image / 2 + 0.5).clamp(0, 1)
|
94 |
image = image.cpu().permute(0, 2, 3, 1).numpy()
|