patrickvonplaten commited on
Commit
30d7398
·
1 Parent(s): 1c82004
eval.py CHANGED
@@ -1,45 +1,126 @@
1
  #!/usr/bin/env python3
2
- from datasets import load_dataset, load_metric, Audio
3
- from transformers import AutoModelForCTC, AutoProcessor, Wav2Vec2Processor
4
- import torch
5
  import re
 
 
6
 
7
- lang = "sv-SE"
8
- model_id = "./xls-r-300m-sv"
9
 
10
- device = "cuda" if torch.cuda.is_available() else "cpu"
 
11
 
12
- dataset = load_dataset("mozilla-foundation/common_voice_7_0", lang, split="test", use_auth_token=True)
13
- wer = load_metric("wer")
14
 
15
- dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))
 
 
16
 
17
- model = AutoModelForCTC.from_pretrained(model_id).to(device)
18
- processor = AutoProcessor.from_pretrained(model_id)
 
19
 
 
 
 
 
 
 
20
 
21
- chars_to_ignore_regex = '[,?.!\-\;\:\"“%‘”�—’…–]' # change to the ignored characters of your fine-tuned model
 
22
 
 
 
 
 
23
 
24
- def map_to_pred(batch):
25
- input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest", sampling_rate=16_000).input_values
26
 
27
- with torch.no_grad():
28
- logits = model(input_values.to(device)).logits
 
 
 
 
29
 
30
- if processor.__class__.__name__ == "Wav2Vec2Processor":
31
- predicted_ids = torch.argmax(logits, dim=-1)
32
- transcription = processor.batch_decode(predicted_ids)[0]
33
- else:
34
- transcription = processor.batch_decode(logits.cpu().numpy()).text[0]
35
 
36
- batch["transcription"] = transcription
37
- batch["text"] = re.sub(chars_to_ignore_regex, "", batch["sentence"].lower())
38
- return batch
39
 
 
 
40
 
41
- result = dataset.map(map_to_pred, remove_columns=["audio"])
42
 
43
- wer_result = wer.compute(references=result["text"], predictions=result["transcription"])
44
 
45
- print("WER", wer_result)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  #!/usr/bin/env python3
2
+ from datasets import load_dataset, load_metric, Audio, Dataset
3
+ from transformers import pipeline, AutoFeatureExtractor
 
4
  import re
5
+ import argparse
6
+ from typing import Dict
7
 
 
 
8
 
9
+ def log_results(result: Dataset, args: Dict[str, str]):
10
+ """ DO NOT CHANGE. This function computes and logs the result metrics. """
11
 
12
+ log_outputs = args.log_outputs
13
+ dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
14
 
15
+ # load metric
16
+ wer = load_metric("wer")
17
+ cer = load_metric("cer")
18
 
19
+ # compute metrics
20
+ wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
21
+ cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
22
 
23
+ # print & log results
24
+ result_str = (
25
+ f"WER: {wer_result}\n"
26
+ f"CER: {cer_result}"
27
+ )
28
+ print(result_str)
29
 
30
+ with open(f"{dataset_id}_eval_results.txt", "w") as f:
31
+ f.write(result_str)
32
 
33
+ # log all results in text file. Possibly interesting for analysis
34
+ if log_outputs is not None:
35
+ pred_file = f"log_{dataset_id}_predictions.txt"
36
+ target_file = f"log_{dataset_id}_targets.txt"
37
 
38
+ with open(pred_file, "w") as p, open(target_file, "w") as t:
 
39
 
40
+ # mapping function to write output
41
+ def write_to_file(batch, i):
42
+ p.write(f"{i}" + "\n")
43
+ p.write(batch["prediction"] + "\n")
44
+ t.write(f"{i}" + "\n")
45
+ t.write(batch["target"] + "\n")
46
 
47
+ result.map(write_to_file, with_indices=True)
 
 
 
 
48
 
 
 
 
49
 
50
+ def normalize_text(text: str) -> str:
51
+ """ DO ADAPT FOR YOUR USE CASE. this function normalizes the target text. """
52
 
53
+ chars_to_ignore_regex = '[,?.!\-\;\:\"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
54
 
55
+ text = re.sub(chars_to_ignore_regex, "", text.lower())
56
 
57
+ # In addition, we can normalize the target text, e.g. removing new lines characters etc...
58
+ # note that order is important here!
59
+ token_sequences_to_ignore = ["\n\n", "\n", " ", " "]
60
+
61
+ for t in token_sequences_to_ignore:
62
+ text = " ".join(text.split(t))
63
+
64
+ return text
65
+
66
+
67
+ def main(args):
68
+ # load dataset
69
+ dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
70
+
71
+ # for testing: only process the first two examples as a test
72
+ dataset = dataset.select(range(10))
73
+
74
+ # load processor
75
+ feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
76
+ sampling_rate = feature_extractor.sampling_rate
77
+
78
+ # resample audio
79
+ dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate))
80
+
81
+ # load eval pipeline
82
+ asr = pipeline("automatic-speech-recognition", model=args.model_id)
83
+
84
+ # map function to decode audio
85
+ def map_to_pred(batch):
86
+ prediction = asr(batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s)
87
+
88
+ batch["prediction"] = prediction["text"]
89
+ batch["target"] = normalize_text(batch["sentence"])
90
+ return batch
91
+
92
+ # run inference on all examples
93
+ result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
94
+
95
+ # compute and log_results
96
+ # do not change function below
97
+ log_results(result, args)
98
+
99
+
100
+ if __name__ == "__main__":
101
+ parser = argparse.ArgumentParser()
102
+
103
+ parser.add_argument(
104
+ "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
105
+ )
106
+ parser.add_argument(
107
+ "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets"
108
+ )
109
+ parser.add_argument(
110
+ "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
111
+ )
112
+ parser.add_argument(
113
+ "--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`"
114
+ )
115
+ parser.add_argument(
116
+ "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
117
+ )
118
+ parser.add_argument(
119
+ "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
120
+ )
121
+ parser.add_argument(
122
+ "--log_outputs", action='store_true', help="If defined, write outputs to log file for analysis."
123
+ )
124
+ args = parser.parse_args()
125
+
126
+ main(args)
log_mozilla-foundation_common_voice_7_0_sv-SE_test_predictions.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 0
2
+ jag lämnade grovjobbet åt honom
3
+ 1
4
+ ja för att åter få ett stulet föremål
5
+ 2
6
+ har du fortfarande samma nummer
7
+ 3
8
+ det räcker inte
9
+ 4
10
+ där är om
11
+ 5
12
+ vill jag se dig död skulle du var det
13
+ 6
14
+ vi är oemottagliga för din utstrålning
15
+ 7
16
+ jag vet att du pratar med honom
17
+ 8
18
+ dra åt helvete här u
19
+ 9
20
+ hon fick bra betyg för att hon pluggade på kvällen
log_mozilla-foundation_common_voice_7_0_sv-SE_test_targets.txt ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 0
2
+ jag lämnade grovjobbet åt honom
3
+ 1
4
+ ja för att återfå ett stulet föremål
5
+ 2
6
+ har du fortfarande samma nummer
7
+ 3
8
+ det räcker inte
9
+ 4
10
+ där är de
11
+ 5
12
+ ville jag se dig död skulle du vara det
13
+ 6
14
+ vi är oemottagliga för din utstrålning
15
+ 7
16
+ jag vet att du pratar med honom
17
+ 8
18
+ dra åt helvete harry
19
+ 9
20
+ hon fick bra betyg för att hon pluggade på kvällen
mozilla-foundation_common_voice_7_0_sv-SE_test_eval_results.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ WER: 0.11864406779661017
2
+ CER: 0.02666666666666667
run_cv_eval.sh ADDED
@@ -0,0 +1 @@
 
 
1
+ ./eval.py --model_id hf-test/xls-r-300m-sv --dataset mozilla-foundation/common_voice_7_0 --config sv-SE --split test --log_outputs
run_real_eval.sh ADDED
@@ -0,0 +1 @@
 
 
1
+ ./eval.py --model_id hf-test/xls-r-300m-sv --dataset speech-recognition-community-internal/tedx_manual_dev_test --config sv --split validation --chunk_length_s 5.0 --stride_length_s 1.0 --log_outputs