hhffxx commited on
Commit
d7a858d
·
1 Parent(s): 478acd0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -12
README.md CHANGED
@@ -22,10 +22,10 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.926
26
  - name: F1
27
  type: f1
28
- value: 0.9260625630192153
29
  ---
30
 
31
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -35,9 +35,9 @@ should probably proofread and complete it, then remove this comment. -->
35
 
36
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
37
  It achieves the following results on the evaluation set:
38
- - Loss: 0.2295
39
- - Accuracy: 0.926
40
- - F1: 0.9261
41
 
42
  ## Model description
43
 
@@ -57,8 +57,8 @@ More information needed
57
 
58
  The following hyperparameters were used during training:
59
  - learning_rate: 2e-05
60
- - train_batch_size: 64
61
- - eval_batch_size: 64
62
  - seed: 42
63
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
  - lr_scheduler_type: linear
@@ -66,15 +66,15 @@ The following hyperparameters were used during training:
66
 
67
  ### Training results
68
 
69
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
70
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
71
- | 0.8332 | 1.0 | 250 | 0.3398 | 0.8935 | 0.8875 |
72
- | 0.2614 | 2.0 | 500 | 0.2295 | 0.926 | 0.9261 |
73
 
74
 
75
  ### Framework versions
76
 
77
  - Transformers 4.21.1
78
  - Pytorch 1.11.0
79
- - Datasets 2.3.0
80
  - Tokenizers 0.12.1
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.9385
26
  - name: F1
27
  type: f1
28
+ value: 0.9382234767195092
29
  ---
30
 
31
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
35
 
36
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
37
  It achieves the following results on the evaluation set:
38
+ - Loss: 0.2716
39
+ - Accuracy: 0.9385
40
+ - F1: 0.9382
41
 
42
  ## Model description
43
 
 
57
 
58
  The following hyperparameters were used during training:
59
  - learning_rate: 2e-05
60
+ - train_batch_size: 1
61
+ - eval_batch_size: 1
62
  - seed: 42
63
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
  - lr_scheduler_type: linear
 
66
 
67
  ### Training results
68
 
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
70
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
71
+ | 0.5485 | 1.0 | 16000 | 0.3088 | 0.933 | 0.9322 |
72
+ | 0.2384 | 2.0 | 32000 | 0.2716 | 0.9385 | 0.9382 |
73
 
74
 
75
  ### Framework versions
76
 
77
  - Transformers 4.21.1
78
  - Pytorch 1.11.0
79
+ - Datasets 2.4.0
80
  - Tokenizers 0.12.1