import streamlit as st import torch from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("https://huggingface.co/spaces/highdeff/highdeffrepo/tree/main") model = AutoModelForQuestionAnswering.from_pretrained("./trained.pt") def get_answer(context, question): encoding = tokenizer.encode_plus(question, context, return_tensors='pt') input_ids = encoding['input_ids'] attention_mask = encoding['attention_mask'] start_scores, end_scores = model(input_ids, attention_mask=attention_mask) start_index = torch.argmax(start_scores) end_index = torch.argmax(end_scores) answer_tokens = input_ids[0][start_index:end_index+1] answer = tokenizer.decode(answer_tokens) return answer st.title("Question Answering with Transformers") context = st.text_area("Context:", "Enter the context here...") question = st.text_input("Question:", "Enter your question here...") if st.button("Answer"): if not context or not question: st.error("Please provide both a context and a question.") else: answer = get_answer(context, question) st.success(f"Answer: {answer}")