import torch.nn as nn | |
class Net(nn.Module): | |
def __init__(self,input_size,hidden_size1,hidden_size2,output_size): | |
super(Net, self).__init__() | |
self.layer1=nn.Linear(input_size,hidden_size1) | |
self.layer2=nn.Linear(hidden_size1,hidden_size2) | |
self.layer3=nn.Linear(hidden_size2,output_size) | |
self.relu=nn.ReLU() | |
def forward(self,x): | |
x=x.flatten(start_dim=1) | |
x=self.layer1(x) | |
x=self.relu(x) | |
x=self.layer2(x) | |
x=self.relu(x) | |
x=self.layer3(x) | |
return x |