File size: 58,586 Bytes
6bdbfa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
---
base_model: BAAI/bge-small-en-v1.5
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@5
- cosine_ndcg@10
- cosine_ndcg@100
- cosine_mrr@5
- cosine_mrr@10
- cosine_mrr@100
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@5
- dot_recall@10
- dot_ndcg@5
- dot_ndcg@10
- dot_ndcg@100
- dot_mrr@5
- dot_mrr@10
- dot_mrr@100
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1606
- loss:GISTEmbedLoss
widget:
- source_sentence: Do the tours include visits to all the major ghats and Akhara camps?
  sentences:
  - Yes, many tours do cover all major ghats such as Sangam, Ram Ghat, and Dashashwamedh
    Ghat, along with visits to some of the most significant Akhara camps. These tours
    offer pilgrims a unique opportunity to witness the religious and cultural significance
    of these locations. However, we recommend reviewing the specific itinerary of
    your chosen tour for precise details.
  - Yes, many tours do cover all major ghats such as Sangam, Ram Ghat, and Dashashwamedh
    Ghat, along with visits to some of the most significant Akhara camps. These tours
    offer pilgrims a unique opportunity to witness the religious and cultural significance
    of these locations. However, we recommend reviewing the specific itinerary of
    your chosen tour for precise details.
  - The orchestra rehearsed late into the night, perfecting their performance for
    the upcoming concert. Each musician contributed their unique sound, creating a
    harmonious blend of instruments. The conductor insisted on precision and emotion,
    ensuring every note resonated with the audience's heart. Attendees can expect
    a captivating experience, filled with dynamic melodies and intricate crescendos
    that highlight the orchestra's talent and dedication. For a firsthand experience,
    consider arriving early to enjoy the pre-concert discussions.
- source_sentence: What is the significance of the Naga Sadhus in the Shahi Snan?
  sentences:
  - The Naga Sadhus hold a significant place in the Shahi Snan during the Kumbh Mela
    as they are considered the guardians of faith and ancient traditions within Hinduism.
    Known for their ash-covered, unclothed bodies, long matted hair, and intense spiritual
    practices, the Naga Sadhus are the first to take the holy dip during the Shahi
    Snan, symbolizing purity, renunciation, and spiritual strength. Their participation
    is believed to purify the waters of the sacred rivers, making them spiritually
    potent for the millions of pilgrims who follow. The Naga Sadhus’ procession to
    the river, marked by their vibrant chants, tridents, and fearless demeanor, is
    one of the most awe-inspiring spectacles of the Kumbh Mela. Their presence represents
    the commitment to asceticism, devotion, and the protection of religious traditions,
    adding a deeper layer of spiritual intensity and significance to the Shahi Snan
    ritual.
  - During the processions of Peshwai and Shahi Snaans at the Maha Kumbh Mela, Mahamandaleshwaras
    play a unique and central role as the spiritual leaders of their Akharas. They
    lead their followers in grand, royal processions to the riverbanks for the Shahi
    Snan (royal bath), symbolizing the beginning of the holy ritual. Riding on beautifully
    decorated chariots, elephants, or horses, they lead the march with great reverence
    and authority, followed by their disciples, saints, and devotees. The presence
    of Mahamandaleshwaras in these processions signifies the spiritual sanctity and
    importance of the ritual, inspiring pilgrims to partake in the spiritual energy
    and blessings of the holy dip. Their leadership adds a sense of grandeur and divine
    significance to the Shahi Snaans, making them the focal point of the Kumbh Mela.
  - The vibrant world of reptiles is fascinating to explore, particularly focusing
    on the unique adaptations they possess for survival. Snakes, for instance, exhibit
    remarkable methods of locomotion, allowing them to navigate diverse terrains with
    ease. Some species are known for their ability to blend into their surroundings,
    employing camouflage techniques that render them nearly invisible to both predators
    and prey. Additionally, many reptiles display fascinating reproductive behaviors,
    with some laying eggs in protected environments while others give birth to live
    young. The intricate ecosystems that support these creatures highlight the interdependence
    between various species, illustrating the delicate balance of nature. Understanding
    these dynamics can enhance our appreciation for the biodiversity that exists in
    our world and the intricate roles each species plays within its habitat.
- source_sentence: Are there any carpool or ride-sharing options to travel to Prayagraj?
  sentences:
  - 'In the realm of culinary experiences, exploring the myriad flavors of Italian
    cuisine can be quite delightful. One might consider the following aspects:<br><br>1.
    Pasta Varieties: There are numerous types of pasta, from spaghetti to fettuccine,
    each offering a distinct texture and taste in dishes.<br>2. Regional Sauces: Different
    areas of Italy are known for unique sauces, such as marinara, pesto, and Alfredo,
    which can transform a simple meal into a feast. Additionally, using fresh, local
    ingredients enhances the flavors.<br>3. Dining Etiquette: Understanding Italian
    dining customs, such as the significance of antipasti, can enrich one''s experience
    while enjoying meals with family and friends.'
  - 'Yes, there are multiple carpooling and ride-sharing options you can use to travel
    to Prayagraj. These include:<br><br>1. BlaBlaCar: This is a trusted community
    carpooling app where you can connect with people who are traveling in the same
    direction.<br>2. Uber and Ola Share: Both Uber and Ola offer ride-sharing options
    where you can share your ride with other passengers. Please note this might depend
    on the city you are traveling from.<br>3. Local Carpooling groups: There may be
    local carpooling groups on social media platforms like Facebook and WhatsApp where
    people share their travel plans.'
  - The Kumbh Mela hosts a diverse array of spiritual gurus, each representing different
    spiritual traditions and philosophies within Hinduism. Prominent among them are
    the Mahamandaleshwaras of the various Akharas, who are highly respected for their
    deep knowledge of scriptures and spiritual leadership. Then there are the Naga
    Sadhus, known for their ascetic lifestyle and unique appearance, who represent
    intense spiritual discipline and renunciation. \n  \n The Acharyas and Prayagwals
    serve as guides and teachers for pilgrims, offering religious services and performing
    important rituals like Pind Daan and Shraadh. Additionally, there are Dandi Sanyasis
    who follow the path of austerity and renunciation, emphasizing self-discipline
    and simplicity.
- source_sentence: What is the best train route to Prayagraj from Varanasi?
  sentences:
  - The best train route from Varanasi to Prayagraj is via the Indian Railways. There
    are multiple trains that operate on this route daily. <br><br>1. VBS BSB Express
    (14235)<br>2. Shiv Ganga Express (12559)<br>3. Mahanagri Express (11093)<br>4.
    Kashi Vishwanath Express (14257)<br>5. Vande Bharat <br><br>For the most accurate
    and up-to-date information on train timings to Prayagraj, please visit the IRCTC
    website <<u><a target='_blank' href='https://www.irctc.co.in/nget/'>https://www.irctc.co.in/nget/</a></u>>
  - Yes, towing services are available if your vehicle breaks down in the parking
    lot.
  - A delightful assortment of pastries can significantly enhance any gathering. Chocolate
    eclairs, fruit tarts, and macarons are popular choices among guests. <br><br>1.
    Lemon meringue tart<br>2. Almond croissant<br>3. Raspberry mille-feuille<br>4.
    Vanilla cream puff<br>5. Caramel flan <br><br>For an exquisite culinary experience,
    consider attending a pastry-making workshop for hands-on learning and tips from
    skilled bakers.
- source_sentence: What does Deep Daan symbolize?
  sentences:
  - In the quiet corners of a bustling city, the sound of a distant siren punctuates
    the air, hinting at life’s unpredictability. A lone musician sets up his stand,
    strings resonating softly as pedestrians pass by, each lost in their own thoughts.
    The warmth of the sun flows over the pavement, while children chase after colorful
    kites soaring high above. Nearby, a group gathers for laughter and stories, each
    voice woven into a tapestry of community and connection. As day turns to dusk,
    the sky transforms into a palette of vibrant colors, inviting dreams and possibilities
    under the expansive canvas of the universe.
  - Deep Daan involves the ritual of lighting oil lamps (diyas) and floating them
    on the river as an offering to the divine. This act symbolizes the removal of
    darkness and ignorance, representing the soul’s journey towards enlightenment
    and spiritual awakening. The flickering lamps also signify hope, devotion, and
    a wish for divine blessings. During the Kumbh Mela, Deep Daan is considered a
    powerful ritual that purifies the mind and soul, bringing peace and fulfillment
    to the devotees performing it.
  - The duration of the tours typically ranges from 1-day to 3-day packages. Start
    times for the tours are usually early in the morning to ensure participants make
    the most of the day’s activities, which may include attending religious rituals,
    visiting temples, and sightseeing. Exact timings will be communicated to you once
    your booking is confirmed.
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: val evaluator
      type: val_evaluator
    metrics:
    - type: cosine_accuracy@1
      value: 0.5621890547263682
      name: Cosine Accuracy@1
    - type: cosine_accuracy@5
      value: 0.9328358208955224
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9676616915422885
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.5621890547263682
      name: Cosine Precision@1
    - type: cosine_precision@5
      value: 0.1865671641791045
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09676616915422885
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.5621890547263682
      name: Cosine Recall@1
    - type: cosine_recall@5
      value: 0.9328358208955224
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9676616915422885
      name: Cosine Recall@10
    - type: cosine_ndcg@5
      value: 0.7755192663647908
      name: Cosine Ndcg@5
    - type: cosine_ndcg@10
      value: 0.7872765799335859
      name: Cosine Ndcg@10
    - type: cosine_ndcg@100
      value: 0.7949599458501615
      name: Cosine Ndcg@100
    - type: cosine_mrr@5
      value: 0.7216832504145936
      name: Cosine Mrr@5
    - type: cosine_mrr@10
      value: 0.726826186527679
      name: Cosine Mrr@10
    - type: cosine_mrr@100
      value: 0.7287172339895628
      name: Cosine Mrr@100
    - type: cosine_map@100
      value: 0.7287172339895628
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.5621890547263682
      name: Dot Accuracy@1
    - type: dot_accuracy@5
      value: 0.9353233830845771
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.9676616915422885
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.5621890547263682
      name: Dot Precision@1
    - type: dot_precision@5
      value: 0.1870646766169154
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09676616915422885
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.5621890547263682
      name: Dot Recall@1
    - type: dot_recall@5
      value: 0.9353233830845771
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.9676616915422885
      name: Dot Recall@10
    - type: dot_ndcg@5
      value: 0.776654033153749
      name: Dot Ndcg@5
    - type: dot_ndcg@10
      value: 0.7875252591924246
      name: Dot Ndcg@10
    - type: dot_ndcg@100
      value: 0.795208625109
      name: Dot Ndcg@100
    - type: dot_mrr@5
      value: 0.7223880597014923
      name: Dot Mrr@5
    - type: dot_mrr@10
      value: 0.7271164021164023
      name: Dot Mrr@10
    - type: dot_mrr@100
      value: 0.7290074495782858
      name: Dot Mrr@100
    - type: dot_map@100
      value: 0.7290074495782857
      name: Dot Map@100
---

# SentenceTransformer based on BAAI/bge-small-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("himanshu23099/bge_embedding_finetune1")
# Run inference
sentences = [
    'What does Deep Daan symbolize?',
    'Deep Daan involves the ritual of lighting oil lamps (diyas) and floating them on the river as an offering to the divine. This act symbolizes the removal of darkness and ignorance, representing the soul’s journey towards enlightenment and spiritual awakening. The flickering lamps also signify hope, devotion, and a wish for divine blessings. During the Kumbh Mela, Deep Daan is considered a powerful ritual that purifies the mind and soul, bringing peace and fulfillment to the devotees performing it.',
    'In the quiet corners of a bustling city, the sound of a distant siren punctuates the air, hinting at life’s unpredictability. A lone musician sets up his stand, strings resonating softly as pedestrians pass by, each lost in their own thoughts. The warmth of the sun flows over the pavement, while children chase after colorful kites soaring high above. Nearby, a group gathers for laughter and stories, each voice woven into a tapestry of community and connection. As day turns to dusk, the sky transforms into a palette of vibrant colors, inviting dreams and possibilities under the expansive canvas of the universe.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `val_evaluator`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.5622    |
| cosine_accuracy@5   | 0.9328    |
| cosine_accuracy@10  | 0.9677    |
| cosine_precision@1  | 0.5622    |
| cosine_precision@5  | 0.1866    |
| cosine_precision@10 | 0.0968    |
| cosine_recall@1     | 0.5622    |
| cosine_recall@5     | 0.9328    |
| cosine_recall@10    | 0.9677    |
| cosine_ndcg@5       | 0.7755    |
| cosine_ndcg@10      | 0.7873    |
| cosine_ndcg@100     | 0.795     |
| cosine_mrr@5        | 0.7217    |
| cosine_mrr@10       | 0.7268    |
| cosine_mrr@100      | 0.7287    |
| cosine_map@100      | 0.7287    |
| dot_accuracy@1      | 0.5622    |
| dot_accuracy@5      | 0.9353    |
| dot_accuracy@10     | 0.9677    |
| dot_precision@1     | 0.5622    |
| dot_precision@5     | 0.1871    |
| dot_precision@10    | 0.0968    |
| dot_recall@1        | 0.5622    |
| dot_recall@5        | 0.9353    |
| dot_recall@10       | 0.9677    |
| dot_ndcg@5          | 0.7767    |
| dot_ndcg@10         | 0.7875    |
| dot_ndcg@100        | 0.7952    |
| dot_mrr@5           | 0.7224    |
| dot_mrr@10          | 0.7271    |
| dot_mrr@100         | 0.729     |
| **dot_map@100**     | **0.729** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 1,606 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                            | negative                                                                             |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              | string                                                                               |
  | details | <ul><li>min: 8 tokens</li><li>mean: 18.11 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 110.54 tokens</li><li>max: 504 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 114.86 tokens</li><li>max: 424 tokens</li></ul> |
* Samples:
  | anchor                                                                                                              | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
  |:--------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Why should one do the Prayagraj Panchkoshi Parikrama?</code>                                                  | <code>The Prayagraj Panchkoshi Parikrama is a deeply revered spiritual journey that offers multiple benefits to devotees. It is believed to grant blessings equivalent to visiting all sacred pilgrimage sites in India, providing divine grace and spiritual merit. The Parikrama route covers significant temples like the Dwadash Madhav temples, Akshayavat, and Mankameshwar, which are steeped in Hindu mythology and history, allowing pilgrims to connect with the spiritual and cultural heritage of Prayagraj. This circumambulation around sacred sites is also seen as a way to cleanse one's sins and progress towards Moksha (liberation from the cycle of birth and rebirth), making it a path of introspection and spiritual growth. The pilgrimage fosters unity among people from diverse backgrounds, offering a unique cultural exchange and shared spiritual experience. By participating, devotees also help revive an ancient tradition integral to the Kumbh Mela for centuries, reconnecting with age-old practices that have shaped the region's spiritual landscape. The Prayagraj Panchkoshi Parikrama is a profound journey of faith and devotion, enriching the spiritual lives of those who undertake it.</code> | <code>Elevators are remarkable inventions that revolutionized how we navigate tall buildings. They provide a swift, efficient means of transportation between floors, making urban life more accessible. These mechanical wonders operate on a system of pulleys and counterweights, enabling them to carry heavy loads effortlessly. Safety features like emergency brakes and backup power systems ensure that passengers remain secure during their journey. Various designs and styles can be seen in buildings around the world, from sleek modern glass models to vintage models that evoke nostalgia. Elevators also highlight the advancement of engineering and technology over time, evolving from rudimentary designs to sophisticated machines with smart technology. They are essential in various settings, including residential, commercial, and industrial spaces, offering convenience and practicality. Their presence also allows for the efficient use of vertical space, fostering creativity in architectural designs and city planning. Overall, elevators have become an essential part of contemporary infrastructure, enhancing the way we live and work.</code> |
  | <code>Can I hire an E-Rickshaw for a specific duration or multiple stops within the Mela?</code>                    | <code>Yes, E-Rickshaws have designated pick-up points, and you can hire them for a specific duration or multiple stops depending on your needs and arrangements with the driver</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <code>The process of assigning roles in a theatrical production often involves extensive auditions and interviews. Each candidate brings unique skills, and the director must carefully consider how their abilities will fit into the overall vision for the performance. Team dynamics play a crucial role, as collaboration is essential for a successful show.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  | <code>What are the best routes to avoid traffic while traveling from Prayagraj Junction to the Mela grounds?</code> | <code>The distance between Prayagraj Junction and the Mela Grounds during the Kumbh Mela in Prayagraj, India is approximately 5-7 kilometers. By bus, this could take anywhere from 20-40 minutes, depending on traffic and the specific route.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <code>The ancient art of glassblowing has captivated artisans for centuries. Bubbles of molten glass are deftly shaped into exquisite forms, revealing the synergy between fire and craftsmanship. The process requires both skill and creativity, resulting in functional pieces or striking sculptures that bring vibrancy to any space. Each creation is unique, echoing the delicate dance of temperature and technique involved in the art form.</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.01}
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 402 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 402 samples:
  |         | anchor                                                                            | positive                                                                            | negative                                                                             |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              | string                                                                               |
  | details | <ul><li>min: 8 tokens</li><li>mean: 17.98 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 111.36 tokens</li><li>max: 471 tokens</li></ul> | <ul><li>min: 30 tokens</li><li>mean: 116.68 tokens</li><li>max: 501 tokens</li></ul> |
* Samples:
  | anchor                                                                                                    | positive                                                                                                                                                                                                                                                  | negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
  |:----------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is the Female Helpline number?</code>                                                          | <code>The Women and Child Helpline number for assistance during the Maha Kumbh 2025 is 1091. This service is available for any support related to the safety and well-being of women and children.</code>                                                 | <code>The average lifespan of a species can vary significantly. In some cases, dolphins can live up to 60 years, while certain types of tortoises have been known to exceed 150 years. Understanding the factors that influence longevity is essential in the study of wildlife conservation.</code>                                                                                                                                                                                                                                                                                                                |
  | <code>What is the estimated travel time from the Airport to the Mela grounds during peak hours?</code>    | <code>The estimated travel time from the Airport to the Mela grounds is about 1 hour on non-peak days. Travel times may vary significantly during peak hours due to traffic and road conditions.<br><br></code>                                           | <code>The recipe for chocolate cake requires several key ingredients to achieve the perfect texture. Begin by preheating the oven to 350°F. Combine flour, sugar, cocoa powder, and eggs in a large mixing bowl, stirring until smooth. Baking can be an enjoyable process filled with delightful aromas and flavors.</code>                                                                                                                                                                                                                                                                                        |
  | <code>How safe is it to travel by public transport from Prayagraj city to the Kumbh Mela at night?</code> | <code>There is no direct metro service to the Mela grounds from Prayagraj city. However, Govt operated dedicated shuttle buses are available within Prayagraj for transportation to the Mela. These buses operate on fixed routes and fixed times.</code> | <code>The fastest way to prepare a delicious apple pie starts with choosing the right variety of apples. Granny Smith apples are great for tartness, while Honeycrisp provides sweetness. After washing and peeling the apples, slice them into thin pieces, ensuring an even texture. Combine the apple slices with sugar, cinnamon, and a hint of lemon juice. Roll out your pie crust and fill it generously with the apple mixture, top it with another crust, and create small vents to allow steam to escape. Bake at 425°F until golden brown, and enjoy the fantastic aroma that fills your kitchen!</code> |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
  ```json
  {'guide': SentenceTransformer(
    (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
    (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
    (2): Normalize()
  ), 'temperature': 0.01}
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `gradient_accumulation_steps`: 2
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 30
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 30
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch       | Step    | Training Loss | Validation Loss | val_evaluator_dot_map@100 |
|:-----------:|:-------:|:-------------:|:---------------:|:-------------------------:|
| 0.1980      | 10      | 0.8028        | 0.4071          | 0.6415                    |
| 0.3960      | 20      | 0.7561        | 0.3701          | 0.6406                    |
| 0.5941      | 30      | 0.9729        | 0.3100          | 0.6415                    |
| 0.7921      | 40      | 0.6137        | 0.2505          | 0.6478                    |
| 0.9901      | 50      | 0.4747        | 0.1978          | 0.6501                    |
| 1.1881      | 60      | 0.4595        | 0.1609          | 0.6541                    |
| 1.3861      | 70      | 0.3862        | 0.1300          | 0.6570                    |
| 1.5842      | 80      | 0.293         | 0.1003          | 0.6606                    |
| 1.7822      | 90      | 0.2806        | 0.0760          | 0.6588                    |
| 1.9802      | 100     | 0.1249        | 0.0586          | 0.6616                    |
| 2.1782      | 110     | 0.2265        | 0.0503          | 0.6677                    |
| 2.3762      | 120     | 0.1292        | 0.0482          | 0.6701                    |
| 2.5743      | 130     | 0.1649        | 0.0448          | 0.6756                    |
| 2.7723      | 140     | 0.1213        | 0.0442          | 0.6810                    |
| 2.9703      | 150     | 0.1363        | 0.0419          | 0.6843                    |
| 3.1683      | 160     | 0.0972        | 0.0376          | 0.6859                    |
| 3.3663      | 170     | 0.1079        | 0.0326          | 0.6896                    |
| 3.5644      | 180     | 0.1265        | 0.0293          | 0.6899                    |
| 3.7624      | 190     | 0.0645        | 0.0279          | 0.6952                    |
| 3.9604      | 200     | 0.1116        | 0.0272          | 0.6934                    |
| 4.1584      | 210     | 0.0757        | 0.0258          | 0.6954                    |
| 4.3564      | 220     | 0.1492        | 0.0248          | 0.6991                    |
| 4.5545      | 230     | 0.0536        | 0.0246          | 0.6971                    |
| 4.7525      | 240     | 0.0346        | 0.0248          | 0.6958                    |
| 4.9505      | 250     | 0.0501        | 0.0247          | 0.6974                    |
| 5.1485      | 260     | 0.0443        | 0.0248          | 0.6975                    |
| 5.3465      | 270     | 0.0585        | 0.0245          | 0.6998                    |
| 5.5446      | 280     | 0.0514        | 0.0246          | 0.7013                    |
| 5.7426      | 290     | 0.0948        | 0.0244          | 0.7073                    |
| 5.9406      | 300     | 0.054         | 0.0243          | 0.7049                    |
| 6.1386      | 310     | 0.0317        | 0.0241          | 0.7069                    |
| 6.3366      | 320     | 0.1327        | 0.0249          | 0.7061                    |
| 6.5347      | 330     | 0.0665        | 0.0255          | 0.7073                    |
| 6.7327      | 340     | 0.09          | 0.0257          | 0.7073                    |
| 6.9307      | 350     | 0.111         | 0.0255          | 0.7067                    |
| 7.1287      | 360     | 0.0473        | 0.0255          | 0.7096                    |
| 7.3267      | 370     | 0.0429        | 0.0248          | 0.7063                    |
| 7.5248      | 380     | 0.0686        | 0.0249          | 0.7087                    |
| 7.7228      | 390     | 0.1096        | 0.0251          | 0.7113                    |
| 7.9208      | 400     | 0.0794        | 0.0255          | 0.7083                    |
| 8.1188      | 410     | 0.0354        | 0.0246          | 0.7094                    |
| 8.3168      | 420     | 0.078         | 0.0239          | 0.7093                    |
| 8.5149      | 430     | 0.091         | 0.0234          | 0.7057                    |
| 8.7129      | 440     | 0.084         | 0.0236          | 0.7107                    |
| 8.9109      | 450     | 0.0702        | 0.0235          | 0.7114                    |
| 9.1089      | 460     | 0.0701        | 0.0233          | 0.7142                    |
| 9.3069      | 470     | 0.0706        | 0.0231          | 0.7140                    |
| 9.5050      | 480     | 0.029         | 0.0230          | 0.7125                    |
| 9.7030      | 490     | 0.0411        | 0.0233          | 0.7107                    |
| 9.9010      | 500     | 0.0691        | 0.0233          | 0.7140                    |
| 10.0990     | 510     | 0.0421        | 0.0232          | 0.7165                    |
| 10.2970     | 520     | 0.0497        | 0.0232          | 0.7200                    |
| 10.4950     | 530     | 0.0639        | 0.0232          | 0.7188                    |
| 10.6931     | 540     | 0.0201        | 0.0238          | 0.7161                    |
| 10.8911     | 550     | 0.0833        | 0.0241          | 0.7170                    |
| 11.0891     | 560     | 0.0266        | 0.0242          | 0.7197                    |
| 11.2871     | 570     | 0.0472        | 0.0241          | 0.7220                    |
| 11.4851     | 580     | 0.0614        | 0.0240          | 0.7234                    |
| 11.6832     | 590     | 0.0507        | 0.0242          | 0.7243                    |
| 11.8812     | 600     | 0.031         | 0.0239          | 0.7226                    |
| 12.0792     | 610     | 0.0413        | 0.0239          | 0.7216                    |
| 12.2772     | 620     | 0.0222        | 0.0230          | 0.7234                    |
| 12.4752     | 630     | 0.0466        | 0.0221          | 0.7239                    |
| 12.6733     | 640     | 0.0482        | 0.0219          | 0.7218                    |
| 12.8713     | 650     | 0.0657        | 0.0218          | 0.7197                    |
| 13.0693     | 660     | 0.0521        | 0.0218          | 0.7235                    |
| 13.2673     | 670     | 0.051         | 0.0218          | 0.7234                    |
| 13.4653     | 680     | 0.0674        | 0.0220          | 0.7243                    |
| 13.6634     | 690     | 0.0477        | 0.0220          | 0.7232                    |
| 13.8614     | 700     | 0.0827        | 0.0218          | 0.7232                    |
| 14.0594     | 710     | 0.0501        | 0.0217          | 0.7247                    |
| 14.2574     | 720     | 0.0278        | 0.0216          | 0.7233                    |
| 14.4554     | 730     | 0.0162        | 0.0216          | 0.7201                    |
| 14.6535     | 740     | 0.0515        | 0.0217          | 0.7219                    |
| 14.8515     | 750     | 0.0514        | 0.0218          | 0.7256                    |
| 15.0495     | 760     | 0.088         | 0.0217          | 0.7252                    |
| 15.2475     | 770     | 0.0298        | 0.0217          | 0.7226                    |
| 15.4455     | 780     | 0.0682        | 0.0217          | 0.7259                    |
| 15.6436     | 790     | 0.0485        | 0.0217          | 0.7253                    |
| 15.8416     | 800     | 0.0419        | 0.0217          | 0.7286                    |
| 16.0396     | 810     | 0.0823        | 0.0216          | 0.7268                    |
| 16.2376     | 820     | 0.0533        | 0.0215          | 0.7250                    |
| 16.4356     | 830     | 0.0336        | 0.0215          | 0.7262                    |
| 16.6337     | 840     | 0.0375        | 0.0214          | 0.7270                    |
| 16.8317     | 850     | 0.0243        | 0.0213          | 0.7281                    |
| 17.0297     | 860     | 0.0675        | 0.0212          | 0.7265                    |
| 17.2277     | 870     | 0.0482        | 0.0211          | 0.7260                    |
| 17.4257     | 880     | 0.0511        | 0.0211          | 0.7297                    |
| 17.6238     | 890     | 0.0396        | 0.0211          | 0.7282                    |
| **17.8218** | **900** | **0.0493**    | **0.0211**      | **0.7275**                |
| 18.0198     | 910     | 0.0378        | 0.0210          | 0.7279                    |
| 18.2178     | 920     | 0.0546        | 0.0210          | 0.7265                    |
| 18.4158     | 930     | 0.0421        | 0.0209          | 0.7286                    |
| 18.6139     | 940     | 0.0599        | 0.0208          | 0.7286                    |
| 18.8119     | 950     | 0.0766        | 0.0205          | 0.7297                    |
| 19.0099     | 960     | 0.0204        | 0.0205          | 0.7275                    |
| 19.2079     | 970     | 0.0321        | 0.0205          | 0.7282                    |
| 19.4059     | 980     | 0.0069        | 0.0204          | 0.7266                    |
| 19.6040     | 990     | 0.0563        | 0.0205          | 0.7245                    |
| 19.8020     | 1000    | 0.0575        | 0.0205          | 0.7236                    |
| 20.0        | 1010    | 0.0207        | 0.0205          | 0.7261                    |
| 20.1980     | 1020    | 0.03          | 0.0205          | 0.7253                    |
| 20.3960     | 1030    | 0.0712        | 0.0205          | 0.7269                    |
| 20.5941     | 1040    | 0.0482        | 0.0205          | 0.7277                    |
| 20.7921     | 1050    | 0.05          | 0.0205          | 0.7283                    |
| 20.9901     | 1060    | 0.0407        | 0.0205          | 0.7282                    |
| 21.1881     | 1070    | 0.0591        | 0.0205          | 0.7286                    |
| 21.3861     | 1080    | 0.0228        | 0.0205          | 0.7265                    |
| 21.5842     | 1090    | 0.0318        | 0.0205          | 0.7264                    |
| 21.7822     | 1100    | 0.0768        | 0.0205          | 0.7254                    |
| 21.9802     | 1110    | 0.0415        | 0.0205          | 0.7264                    |
| 22.1782     | 1120    | 0.0681        | 0.0205          | 0.7252                    |
| 22.3762     | 1130    | 0.0622        | 0.0205          | 0.7255                    |
| 22.5743     | 1140    | 0.0508        | 0.0205          | 0.7251                    |
| 22.7723     | 1150    | 0.0642        | 0.0205          | 0.7237                    |
| 22.9703     | 1160    | 0.0469        | 0.0206          | 0.7245                    |
| 23.1683     | 1170    | 0.0172        | 0.0206          | 0.7256                    |
| 23.3663     | 1180    | 0.055         | 0.0206          | 0.7255                    |
| 23.5644     | 1190    | 0.0488        | 0.0206          | 0.7266                    |
| 23.7624     | 1200    | 0.0208        | 0.0206          | 0.7243                    |
| 23.9604     | 1210    | 0.0415        | 0.0206          | 0.7249                    |
| 24.1584     | 1220    | 0.0804        | 0.0206          | 0.7264                    |
| 24.3564     | 1230    | 0.0243        | 0.0205          | 0.7256                    |
| 24.5545     | 1240    | 0.037         | 0.0205          | 0.7258                    |
| 24.7525     | 1250    | 0.0604        | 0.0205          | 0.7284                    |
| 24.9505     | 1260    | 0.0278        | 0.0205          | 0.7245                    |
| 25.1485     | 1270    | 0.0317        | 0.0205          | 0.7235                    |
| 25.3465     | 1280    | 0.0824        | 0.0205          | 0.7253                    |
| 25.5446     | 1290    | 0.0639        | 0.0205          | 0.7258                    |
| 25.7426     | 1300    | 0.0269        | 0.0205          | 0.7247                    |
| 25.9406     | 1310    | 0.0429        | 0.0205          | 0.7278                    |
| 26.1386     | 1320    | 0.0692        | 0.0205          | 0.7279                    |
| 26.3366     | 1330    | 0.0771        | 0.0205          | 0.7301                    |
| 26.5347     | 1340    | 0.0578        | 0.0205          | 0.7280                    |
| 26.7327     | 1350    | 0.025         | 0.0205          | 0.7258                    |
| 26.9307     | 1360    | 0.0414        | 0.0205          | 0.7286                    |
| 27.1287     | 1370    | 0.0484        | 0.0205          | 0.7284                    |
| 27.3267     | 1380    | 0.0581        | 0.0205          | 0.7294                    |
| 27.5248     | 1390    | 0.069         | 0.0205          | 0.7288                    |
| 27.7228     | 1400    | 0.0864        | 0.0205          | 0.7301                    |
| 27.9208     | 1410    | 0.0605        | 0.0205          | 0.7285                    |
| 28.1188     | 1420    | 0.0327        | 0.0205          | 0.7271                    |
| 28.3168     | 1430    | 0.0789        | 0.0205          | 0.7258                    |
| 28.5149     | 1440    | 0.056         | 0.0205          | 0.7276                    |
| 28.7129     | 1450    | 0.0256        | 0.0205          | 0.7272                    |
| 28.9109     | 1460    | 0.0316        | 0.0205          | 0.7273                    |
| 29.1089     | 1470    | 0.0528        | 0.0205          | 0.7287                    |
| 29.3069     | 1480    | 0.0552        | 0.0205          | 0.7274                    |
| 29.5050     | 1490    | 0.0441        | 0.0205          | 0.7287                    |
| 29.7030     | 1500    | 0.0246        | 0.0205          | 0.7290                    |

* The bold row denotes the saved checkpoint.
</details>

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.1.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### GISTEmbedLoss
```bibtex
@misc{solatorio2024gistembed,
    title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
    author={Aivin V. Solatorio},
    year={2024},
    eprint={2402.16829},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->