File size: 52,653 Bytes
47045ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 |
---
base_model: BAAI/bge-small-en-v1.5
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@5
- cosine_ndcg@10
- cosine_ndcg@100
- cosine_mrr@5
- cosine_mrr@10
- cosine_mrr@100
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@5
- dot_recall@10
- dot_ndcg@5
- dot_ndcg@10
- dot_ndcg@100
- dot_mrr@5
- dot_mrr@10
- dot_mrr@100
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:563
- loss:GISTEmbedLoss
widget:
- source_sentence: Can I pay for parking using digital payment methods like UPI, credit/debit
cards, or mobile wallets?
sentences:
- The vibrant colors of autumn leaves create a breathtaking tapestry across the
landscape, reminding us of nature's artistry. Many people enjoy taking strolls
through parks to appreciate the crisp air and the sound of crunching leaves underfoot.
Some choose to photograph the scenery, capturing fleeting moments of beauty, while
others might indulge in seasonal treats like pumpkin spice lattes. Embracing the
change in seasons also encourages us to reflect on personal growth and the passage
of time as we move towards the winter months.
- Yes, most parking areas accept digital payment methods such as UPI, credit/debit
cards, or mobile wallets to facilitate cashless transactions. However, it is recommended
to carry some cash as a backup because digital payments might not always work
due to network issues and high crowd density during peak times.
- Mahakumbh 2025 will start on 13 January with the Paush Purnima bath and end on
26 February with the Mahashivratri bath.
- source_sentence: What is Aarti
sentences:
- No, shuttle buses will not have dedicated volunteers specifically, but for assistance,
you can reach out to the nearest information center.
- "In India, since ancient times, rivers are worshipped due to their importance\
\ to the human life. \n\nLikewise, in Tirathraj Prayagraj, Aartis’ are performed\
\ on the banks of Ganga, Yamuna and at Sangam with great admiration, deep-rooted\
\ honor and devotion. In Prayagraj, Prayagraj Mela Authority and various other\
\ communities make grand arrangements for these Aartis.\n\nThe Aartis are performed\
\ in the mornings and evenings, in which priests (Batuks), normally 5 to 7 in\
\ number, chant hymns with great fervor, holding meticulously designed lamps and\
\ worship the rivers with utmost devotion. \n\nThe lamps held by the batuks represent\
\ the importance of panchtatva. On one hand, flames of the lamps signify bowing\
\ to the waters of the sacred rivers and on the other, the holy fumes emanating\
\ from the lamps appear to play the mystic of heaven on earth."
- 'In the realm of celestial bodies, the moons of Jupiter captivate astronomers
with their striking variations. These natural satellites exhibit a diverse range
of landscapes, from the icy crust of Europa to the volcanic surface of Io, each
revealing secrets about the formation of our solar system.
In laboratories around the world, researchers utilize advanced telescopes, funded
by international space agencies, to monitor these moons, collecting data that
aids in understanding their geological processes. They examine topographical maps
and analyze spectrographs, revealing rich insights into the chemical compositions
present on these distant worlds.
Collaborations between scientists and institutions have led to remarkable discoveries,
including the potential for subsurface oceans beneath the icy shell of Europa,
stirring excitement about the possibility of extraterrestrial life. Meanwhile,
rumors of missions planned to explore these enigmatic moons intensify interest
in the ongoing quest for knowledge beyond our home planet.'
- source_sentence: Which all companies offer tour services?
sentences:
- There are no specific facilities exclusively for senior citizens at the Railway
Junction in relation to the Mela. However, most railway stations generally offer
basic amenities like wheelchairs, assistance for boarding and de-boarding, and
special seating areas for senior citizens or those with mobility issues. It is
advisable for senior citizens to check with the railway authorities for any additional
support that might be available during the Mela.
- The art of origami has captivated many enthusiasts around the world. Crafting
intricate designs from simple sheets of paper showcases creativity and precision.
Essential tools include sharp scissors, bone folders, and high-quality paper to
achieve the best results. Workshops often focus on advanced techniques, leading
to beautiful decorative pieces and useful items, enhancing the enjoyment of this
timeless craft.
- All information provided here includes tour services provided by UPSTDC (Uttar
Pradesh State Tourism Development Corporation). Additionally, popular platforms
like MakeMyTrip and other travel websites offer their own tour packages for Kumbh
Mela and nearby attractions. For a wider range of options, you can check these
services directly on their websites to find a tour that best suits your needs.
- source_sentence: From when to when is the Mela?
sentences:
- "Mahakumbh Mela 2025 will begin on 13 January with the Paush Purnima bath and\
\ will conclude on 26 February with the Mahashivratri bath.\n \n While every day\
\ during the Mahakumbh is considered auspicious for bathing, the main bathing\
\ festivals are as follows:\n \n 1. Paush Purnima – 13 January\n 2. Makar Sankranti\
\ – 14 January\n 3. Mauni Amavasya – 29 January\n 4. Vasant Panchami – 3 February\n\
\ 5. Maghi Purnima – 12 February\n 6. Mahashivratri – 26 February\n \n Out of\
\ these, three dates are Shahi Snan festivals, when the Akharas and saints proceed\
\ with grand processions for the bath:\n \n 1. Makar Sankranti – 14 January\n\
\ 2. Mauni Amavasya – 29 January\n 3. Vasant Panchami – 3 February"
- 'The sky today is filled with vibrant clouds, where shades of orange and pink
blend seamlessly into vast expanses of blue. The wind carries the sounds of distant
laughter, as children chase each other through sprawling fields of lush green
grass. Nearby, an old oak tree stands tall, its branches swaying gently and offering
shade to those seeking respite from the warmth of the sun.
A stream meanders through the landscape, its clear waters reflecting the brilliant
hues of the sky above. Dragonflies dart about, their iridescent wings catching
the light as they flit from flower to flower. In the distance, a family prepares
a picnic, the aroma of freshly baked bread mingling with the sweet scent of blooming
wildflowers.
As the afternoon stretches on, the sun begins its slow descent, painting the horizon
in richer tones. The air is filled with a sense of peace and joy, moments warm
with the laughter of friends and the thrill of nature''s beauty all around.'
- No, there is no special bus service specifically for women or families traveling
from the Bus Stand to the Mela. Shuttle buses would be available with fixed timings
and route plans which offer convenient travel
- source_sentence: What is the ritual of Snan or bathing?
sentences:
- Yes, luggage porter services are available at Prayagraj Junction for pilgrims
heading to the Mela. These porters, often referred to as coolies
- 'Taking bath at the confluence of Ganga, Yamuna and invisible Saraswati during
Mahakumbh has special significance. It is believed that by bathing in this holy
confluence, all the sins of a person are washed away and he attains salvation.
Bathing not only symbolizes personal purification, but it also conveys the message
of social harmony and unity, where people from different cultures and communities
come together to participate in this sacred ritual.
It is considered that in special circumstances, the water of rivers also acquires
a special life-giving quality, i.e. nectar, which not only leads to spiritual
development along with purification of the mind, but also gives physical benefits
by getting health.'
- 'The art of knitting is a fascinating hobby that allows individuals to create
beautiful and functional pieces from yarn. By intertwining strands of wool or
cotton, one can produce items ranging from scarves to intricate sweaters. This
craft has been passed down through generations, often bringing family members
together for cozy evenings filled with creativity and conversation.
Knitting not only provides a sense of accomplishment with every completed project
but also promotes focus and relaxation, making it an excellent activity for reducing
stress. Furthermore, the choice of colors and patterns can result in vibrant works
of art, showcasing the unique style and personality of the knitter. Engaging in
this craft often leads to new friendships within community groups that gather
to share techniques and ideas, fostering a sense of belonging among enthusiasts.'
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: val evaluator
type: val_evaluator
metrics:
- type: cosine_accuracy@1
value: 0.8156028368794326
name: Cosine Accuracy@1
- type: cosine_accuracy@5
value: 0.9929078014184397
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8156028368794326
name: Cosine Precision@1
- type: cosine_precision@5
value: 0.1985815602836879
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8156028368794326
name: Cosine Recall@1
- type: cosine_recall@5
value: 0.9929078014184397
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@5
value: 0.9154696629317853
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.9179959550389344
name: Cosine Ndcg@10
- type: cosine_ndcg@100
value: 0.9179959550389344
name: Cosine Ndcg@100
- type: cosine_mrr@5
value: 0.8891252955082741
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.8903073286052008
name: Cosine Mrr@10
- type: cosine_mrr@100
value: 0.8903073286052008
name: Cosine Mrr@100
- type: cosine_map@100
value: 0.8903073286052009
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.8156028368794326
name: Dot Accuracy@1
- type: dot_accuracy@5
value: 0.9929078014184397
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1.0
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.8156028368794326
name: Dot Precision@1
- type: dot_precision@5
value: 0.1985815602836879
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.8156028368794326
name: Dot Recall@1
- type: dot_recall@5
value: 0.9929078014184397
name: Dot Recall@5
- type: dot_recall@10
value: 1.0
name: Dot Recall@10
- type: dot_ndcg@5
value: 0.9154696629317853
name: Dot Ndcg@5
- type: dot_ndcg@10
value: 0.9179959550389344
name: Dot Ndcg@10
- type: dot_ndcg@100
value: 0.9179959550389344
name: Dot Ndcg@100
- type: dot_mrr@5
value: 0.8891252955082741
name: Dot Mrr@5
- type: dot_mrr@10
value: 0.8903073286052008
name: Dot Mrr@10
- type: dot_mrr@100
value: 0.8903073286052008
name: Dot Mrr@100
- type: dot_map@100
value: 0.8903073286052009
name: Dot Map@100
---
# SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("himanshu23099/bge_embedding_finetune_v3")
# Run inference
sentences = [
'What is the ritual of Snan or bathing?',
'Taking bath at the confluence of Ganga, Yamuna and invisible Saraswati during Mahakumbh has special significance. It is believed that by bathing in this holy confluence, all the sins of a person are washed away and he attains salvation.\n\nBathing not only symbolizes personal purification, but it also conveys the message of social harmony and unity, where people from different cultures and communities come together to participate in this sacred ritual.\n\nIt is considered that in special circumstances, the water of rivers also acquires a special life-giving quality, i.e. nectar, which not only leads to spiritual development along with purification of the mind, but also gives physical benefits by getting health.',
'The art of knitting is a fascinating hobby that allows individuals to create beautiful and functional pieces from yarn. By intertwining strands of wool or cotton, one can produce items ranging from scarves to intricate sweaters. This craft has been passed down through generations, often bringing family members together for cozy evenings filled with creativity and conversation.\n\nKnitting not only provides a sense of accomplishment with every completed project but also promotes focus and relaxation, making it an excellent activity for reducing stress. Furthermore, the choice of colors and patterns can result in vibrant works of art, showcasing the unique style and personality of the knitter. Engaging in this craft often leads to new friendships within community groups that gather to share techniques and ideas, fostering a sense of belonging among enthusiasts.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `val_evaluator`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8156 |
| cosine_accuracy@5 | 0.9929 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.8156 |
| cosine_precision@5 | 0.1986 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.8156 |
| cosine_recall@5 | 0.9929 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@5 | 0.9155 |
| cosine_ndcg@10 | 0.918 |
| cosine_ndcg@100 | 0.918 |
| cosine_mrr@5 | 0.8891 |
| cosine_mrr@10 | 0.8903 |
| cosine_mrr@100 | 0.8903 |
| **cosine_map@100** | **0.8903** |
| dot_accuracy@1 | 0.8156 |
| dot_accuracy@5 | 0.9929 |
| dot_accuracy@10 | 1.0 |
| dot_precision@1 | 0.8156 |
| dot_precision@5 | 0.1986 |
| dot_precision@10 | 0.1 |
| dot_recall@1 | 0.8156 |
| dot_recall@5 | 0.9929 |
| dot_recall@10 | 1.0 |
| dot_ndcg@5 | 0.9155 |
| dot_ndcg@10 | 0.918 |
| dot_ndcg@100 | 0.918 |
| dot_mrr@5 | 0.8891 |
| dot_mrr@10 | 0.8903 |
| dot_mrr@100 | 0.8903 |
| dot_map@100 | 0.8903 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 563 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 563 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 16.33 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 93.51 tokens</li><li>max: 402 tokens</li></ul> | <ul><li>min: 16 tokens</li><li>mean: 109.62 tokens</li><li>max: 269 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Are there attached bathrooms in tents?</code> | <code>Attached bathroom facilities in tents vary by vendor and tent type. To know more about the availability of attached bathrooms, please reach out to your chosen Tent City vendor. For more information about these vendors and their services, please click here</code> | <code>The colors of the rainbow blend seamlessly across the canvas of the sky, creating a stunning visual display. Enjoying the beauty of nature can greatly enhance one's mood and inspire creativity. Take a moment to appreciate the vibrant hues and how they interact, as this can lead to a greater understanding of art and light. Exploring different forms of expression allows for personal growth and emotional exploration.</code> |
| <code>Are there any discounts for senior citizens or children on buses traveling from the Bus Stand to the Mela?</code> | <code>No, there are no specific discounts available for senior citizens or children on buses traveling from the Bus Stand to the Mela. Standard ticket prices generally apply to all passengers.</code> | <code>The vibrant colors of autumn leaves create a breathtaking scene as they cascade gently to the ground. Local parks become havens for photographers and nature enthusiasts alike, capturing the fleeting beauty of the season. Crisp air invigorates leisurely strolls, while children gather acorns and pinecones, crafting treasures from nature’s bounty.</code> |
| <code>Are there any luggage porter services available at Prayagraj Junction for pilgrims heading to the Mela?</code> | <code>Yes, luggage porter services are available at Prayagraj Junction for pilgrims heading to the Mela. These porters, often referred to as coolies</code> | <code> can be hired directly at the station to assist with carrying luggage from the train platform to your onward transport or directly to the Mela area.</code> |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 141 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 141 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 16.05 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 88.91 tokens</li><li>max: 324 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 104.84 tokens</li><li>max: 262 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:-------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What family-friendly tours are available?</code> | <code>All tours are designed with families in mind, ensuring a safe, comfortable, and enjoyable experience for all age groups. Whether traveling with children or elderly family members, the tours are structured to accommodate the needs of everyone in the group.<br><br>Specific tours for senior citizens are also available. To explore them, click here : https://bit.ly/4eWFRoH</code> | <code>The majestic mountains rise against the azure sky, their peaks adorned with glistening snow that sparkles in the sunlight. deep valleys shelter hidden waterfalls, where crystal-clear waters cascade gracefully over rocks, creating a tranquil sound reverberating through the lush landscape. Wildlife thrives here, and one may spot elusive deer grazing in the early morning mist. As dusk settles, the horizon transforms into a canvas of vibrant hues, painting a breathtaking sunset that captivates the soul. Each season unveils unique beauty, inviting adventurers to explore its wonders.</code> |
| <code>What are the charges for a private taxi or cab from Prayagraj Airport to the Mela grounds?</code> | <code>Private taxi charges are not fixed</code> | <code>The garden blooms vibrantly with colors and fragrances that attract butterflies and bees. Each petal holds a story from the earth, whispering tales of growth and resilience. Nearby, a small pond reflects the blue sky, while frogs leap joyfully on lily pads, creating ripples that dance across the surface. The sound of rustling leaves accompanies the gentle breeze, making nature's symphony a soothing backdrop for all who pause and appreciate this serene setting. As the sun sets, golden hues envelop the scene, inviting evening creatures to awaken under the twilight.</code> |
| <code>What are the options for traveling to the Kumbh Mela if I arrive late at night at Prayagraj Junction?</code> | <code>If you arrive late at night at Prayagraj Junction for the Kumbh Mela, you have majorly 2 options for travel. <br><br>1. Taxi/Cabs: You can easily find 24/7 taxi services outside the railway station. Prepaid taxis are the most convenient and safe option.<br><br>2. Auto Rickshaws:Auto rickshaws are readily available outside the railway station.</code> | <code>The blooming desert blooms with vibrant colors as dusk approaches. Amidst the sands, ancient stories whisper through the wind, recalling journeys of nomads who tread lightly upon the earth. Some dance beneath the starlit skies, celebrating the beauty of freedom and the vastness of their surroundings. The nocturnal creatures awaken, each sound echoing tales of survival and adventure. Beyond the horizon, a tapestry of dreams unfurls, where every grain of sand holds the promise of a new discovery waiting to be unveiled.</code> |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `gradient_accumulation_steps`: 2
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 90
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 90
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss | val_evaluator_cosine_map@100 |
|:-----------:|:--------:|:-------------:|:---------------:|:----------------------------:|
| 0.5556 | 10 | 0.9623 | 0.5803 | 0.7676 |
| 1.1111 | 20 | 0.8653 | 0.5278 | 0.7684 |
| 1.6667 | 30 | 0.9346 | 0.4556 | 0.7692 |
| 2.2222 | 40 | 0.8058 | 0.3928 | 0.7687 |
| 2.7778 | 50 | 0.6639 | 0.3282 | 0.7723 |
| 3.3333 | 60 | 0.4974 | 0.2657 | 0.7784 |
| 3.8889 | 70 | 0.4447 | 0.2130 | 0.7877 |
| 4.4444 | 80 | 0.4309 | 0.1753 | 0.7922 |
| 5.0 | 90 | 0.2755 | 0.1320 | 0.7951 |
| 5.5556 | 100 | 0.3105 | 0.0826 | 0.8029 |
| 6.1111 | 110 | 0.1539 | 0.0479 | 0.8106 |
| 6.6667 | 120 | 0.22 | 0.0312 | 0.8141 |
| 7.2222 | 130 | 0.235 | 0.0173 | 0.8245 |
| 7.7778 | 140 | 0.1517 | 0.0119 | 0.8257 |
| 8.3333 | 150 | 0.1328 | 0.0095 | 0.8311 |
| 8.8889 | 160 | 0.1175 | 0.0055 | 0.8319 |
| 9.4444 | 170 | 0.1178 | 0.0037 | 0.8308 |
| 10.0 | 180 | 0.0598 | 0.0034 | 0.8338 |
| 10.5556 | 190 | 0.0958 | 0.0030 | 0.8324 |
| 11.1111 | 200 | 0.0681 | 0.0019 | 0.8331 |
| 11.6667 | 210 | 0.069 | 0.0013 | 0.8406 |
| 12.2222 | 220 | 0.0327 | 0.0009 | 0.8522 |
| 12.7778 | 230 | 0.0833 | 0.0006 | 0.8589 |
| 13.3333 | 240 | 0.0806 | 0.0005 | 0.8596 |
| 13.8889 | 250 | 0.0714 | 0.0004 | 0.8658 |
| 14.4444 | 260 | 0.0813 | 0.0004 | 0.8659 |
| 15.0 | 270 | 0.0512 | 0.0003 | 0.8676 |
| 15.5556 | 280 | 0.043 | 0.0003 | 0.8677 |
| 16.1111 | 290 | 0.0526 | 0.0003 | 0.8677 |
| 16.6667 | 300 | 0.0291 | 0.0002 | 0.8651 |
| 17.2222 | 310 | 0.0487 | 0.0002 | 0.8662 |
| 17.7778 | 320 | 0.054 | 0.0002 | 0.8621 |
| 18.3333 | 330 | 0.067 | 0.0002 | 0.8652 |
| 18.8889 | 340 | 0.0415 | 0.0002 | 0.8652 |
| 19.4444 | 350 | 0.0484 | 0.0002 | 0.8652 |
| 20.0 | 360 | 0.0304 | 0.0002 | 0.8690 |
| 20.5556 | 370 | 0.025 | 0.0002 | 0.8697 |
| 21.1111 | 380 | 0.0549 | 0.0002 | 0.8697 |
| 21.6667 | 390 | 0.0375 | 0.0002 | 0.8736 |
| 22.2222 | 400 | 0.0293 | 0.0002 | 0.8749 |
| 22.7778 | 410 | 0.0558 | 0.0002 | 0.8728 |
| 23.3333 | 420 | 0.0458 | 0.0002 | 0.8730 |
| 23.8889 | 430 | 0.0235 | 0.0002 | 0.8730 |
| 24.4444 | 440 | 0.0515 | 0.0002 | 0.8730 |
| 25.0 | 450 | 0.0337 | 0.0002 | 0.8734 |
| 25.5556 | 460 | 0.0376 | 0.0002 | 0.8734 |
| 26.1111 | 470 | 0.0189 | 0.0003 | 0.8734 |
| 26.6667 | 480 | 0.032 | 0.0002 | 0.8734 |
| 27.2222 | 490 | 0.025 | 0.0002 | 0.8695 |
| 27.7778 | 500 | 0.0258 | 0.0002 | 0.8704 |
| 28.3333 | 510 | 0.0351 | 0.0002 | 0.8681 |
| 28.8889 | 520 | 0.0285 | 0.0002 | 0.8679 |
| 29.4444 | 530 | 0.0263 | 0.0002 | 0.8679 |
| 30.0 | 540 | 0.0901 | 0.0002 | 0.8679 |
| 30.5556 | 550 | 0.0323 | 0.0001 | 0.8686 |
| 31.1111 | 560 | 0.0406 | 0.0001 | 0.8728 |
| 31.6667 | 570 | 0.0302 | 0.0001 | 0.8712 |
| 32.2222 | 580 | 0.0195 | 0.0001 | 0.8718 |
| 32.7778 | 590 | 0.0665 | 0.0001 | 0.8718 |
| 33.3333 | 600 | 0.0153 | 0.0001 | 0.8728 |
| 33.8889 | 610 | 0.0378 | 0.0001 | 0.8728 |
| 34.4444 | 620 | 0.0369 | 0.0001 | 0.8763 |
| 35.0 | 630 | 0.0238 | 0.0001 | 0.8706 |
| 35.5556 | 640 | 0.0275 | 0.0001 | 0.8720 |
| 36.1111 | 650 | 0.0469 | 0.0001 | 0.8708 |
| 36.6667 | 660 | 0.0438 | 0.0001 | 0.8788 |
| 37.2222 | 670 | 0.0333 | 0.0001 | 0.8800 |
| 37.7778 | 680 | 0.0186 | 0.0001 | 0.8765 |
| 38.3333 | 690 | 0.0308 | 0.0001 | 0.8765 |
| 38.8889 | 700 | 0.0713 | 0.0001 | 0.8767 |
| 39.4444 | 710 | 0.0188 | 0.0001 | 0.8767 |
| 40.0 | 720 | 0.0205 | 0.0001 | 0.8767 |
| 40.5556 | 730 | 0.0261 | 0.0001 | 0.8767 |
| 41.1111 | 740 | 0.0193 | 0.0001 | 0.8755 |
| 41.6667 | 750 | 0.0367 | 0.0000 | 0.8755 |
| 42.2222 | 760 | 0.0515 | 0.0000 | 0.8755 |
| 42.7778 | 770 | 0.0649 | 0.0000 | 0.8844 |
| 43.3333 | 780 | 0.0333 | 0.0000 | 0.8879 |
| 43.8889 | 790 | 0.0498 | 0.0000 | 0.8868 |
| 44.4444 | 800 | 0.0324 | 0.0000 | 0.8832 |
| 45.0 | 810 | 0.0321 | 0.0000 | 0.8832 |
| 45.5556 | 820 | 0.0354 | 0.0000 | 0.8832 |
| 46.1111 | 830 | 0.04 | 0.0000 | 0.8868 |
| 46.6667 | 840 | 0.0176 | 0.0000 | 0.8868 |
| 47.2222 | 850 | 0.0297 | 0.0000 | 0.8868 |
| 47.7778 | 860 | 0.0469 | 0.0000 | 0.8868 |
| 48.3333 | 870 | 0.025 | 0.0000 | 0.8868 |
| 48.8889 | 880 | 0.0425 | 0.0000 | 0.8868 |
| 49.4444 | 890 | 0.0475 | 0.0000 | 0.8868 |
| 50.0 | 900 | 0.0529 | 0.0000 | 0.8868 |
| 50.5556 | 910 | 0.0312 | 0.0000 | 0.8868 |
| 51.1111 | 920 | 0.0385 | 0.0000 | 0.8832 |
| 51.6667 | 930 | 0.0316 | 0.0000 | 0.8832 |
| 52.2222 | 940 | 0.0361 | 0.0000 | 0.8832 |
| 52.7778 | 950 | 0.053 | 0.0000 | 0.8832 |
| 53.3333 | 960 | 0.0226 | 0.0000 | 0.8868 |
| 53.8889 | 970 | 0.0781 | 0.0000 | 0.8868 |
| 54.4444 | 980 | 0.03 | 0.0000 | 0.8868 |
| 55.0 | 990 | 0.0349 | 0.0000 | 0.8832 |
| 55.5556 | 1000 | 0.0539 | 0.0000 | 0.8832 |
| 56.1111 | 1010 | 0.0351 | 0.0000 | 0.8832 |
| 56.6667 | 1020 | 0.0506 | 0.0000 | 0.8832 |
| 57.2222 | 1030 | 0.0204 | 0.0000 | 0.8832 |
| 57.7778 | 1040 | 0.0254 | 0.0000 | 0.8844 |
| 58.3333 | 1050 | 0.0274 | 0.0000 | 0.8844 |
| 58.8889 | 1060 | 0.001 | 0.0000 | 0.8844 |
| 59.4444 | 1070 | 0.049 | 0.0000 | 0.8844 |
| 60.0 | 1080 | 0.028 | 0.0000 | 0.8844 |
| 60.5556 | 1090 | 0.0477 | 0.0000 | 0.8844 |
| 61.1111 | 1100 | 0.0304 | 0.0000 | 0.8844 |
| 61.6667 | 1110 | 0.0188 | 0.0000 | 0.8844 |
| 62.2222 | 1120 | 0.0247 | 0.0000 | 0.8879 |
| 62.7778 | 1130 | 0.0428 | 0.0000 | 0.8879 |
| 63.3333 | 1140 | 0.0218 | 0.0000 | 0.8879 |
| 63.8889 | 1150 | 0.0476 | 0.0000 | 0.8868 |
| 64.4444 | 1160 | 0.021 | 0.0000 | 0.8868 |
| 65.0 | 1170 | 0.0435 | 0.0000 | 0.8856 |
| 65.5556 | 1180 | 0.0311 | 0.0000 | 0.8856 |
| 66.1111 | 1190 | 0.0275 | 0.0000 | 0.8856 |
| 66.6667 | 1200 | 0.0405 | 0.0000 | 0.8891 |
| 67.2222 | 1210 | 0.0009 | 0.0000 | 0.8891 |
| 67.7778 | 1220 | 0.0506 | 0.0000 | 0.8891 |
| 68.3333 | 1230 | 0.0538 | 0.0000 | 0.8891 |
| 68.8889 | 1240 | 0.0251 | 0.0000 | 0.8891 |
| 69.4444 | 1250 | 0.0168 | 0.0000 | 0.8891 |
| 70.0 | 1260 | 0.0527 | 0.0000 | 0.8903 |
| 70.5556 | 1270 | 0.0491 | 0.0000 | 0.8903 |
| 71.1111 | 1280 | 0.0092 | 0.0000 | 0.8903 |
| 71.6667 | 1290 | 0.0257 | 0.0000 | 0.8903 |
| **72.2222** | **1300** | **0.0455** | **0.0** | **0.8903** |
| 72.7778 | 1310 | 0.0271 | 0.0000 | 0.8903 |
| 73.3333 | 1320 | 0.04 | 0.0000 | 0.8903 |
| 73.8889 | 1330 | 0.0171 | 0.0000 | 0.8903 |
| 74.4444 | 1340 | 0.0157 | 0.0000 | 0.8903 |
| 75.0 | 1350 | 0.0323 | 0.0000 | 0.8903 |
| 75.5556 | 1360 | 0.0372 | 0.0000 | 0.8903 |
| 76.1111 | 1370 | 0.0109 | 0.0000 | 0.8903 |
| 76.6667 | 1380 | 0.0358 | 0.0000 | 0.8903 |
| 77.2222 | 1390 | 0.0279 | 0.0000 | 0.8903 |
| 77.7778 | 1400 | 0.0173 | 0.0000 | 0.8903 |
| 78.3333 | 1410 | 0.0409 | 0.0000 | 0.8903 |
| 78.8889 | 1420 | 0.0139 | 0.0000 | 0.8903 |
| 79.4444 | 1430 | 0.0123 | 0.0000 | 0.8903 |
| 80.0 | 1440 | 0.0232 | 0.0000 | 0.8903 |
| 80.5556 | 1450 | 0.0145 | 0.0000 | 0.8903 |
| 81.1111 | 1460 | 0.0261 | 0.0000 | 0.8903 |
| 81.6667 | 1470 | 0.0137 | 0.0000 | 0.8903 |
| 82.2222 | 1480 | 0.0146 | 0.0000 | 0.8903 |
| 82.7778 | 1490 | 0.0096 | 0.0000 | 0.8903 |
| 83.3333 | 1500 | 0.0245 | 0.0000 | 0.8903 |
| 83.8889 | 1510 | 0.0312 | 0.0000 | 0.8903 |
| 84.4444 | 1520 | 0.0174 | 0.0000 | 0.8903 |
| 85.0 | 1530 | 0.0437 | 0.0000 | 0.8903 |
| 85.5556 | 1540 | 0.0301 | 0.0000 | 0.8903 |
| 86.1111 | 1550 | 0.0119 | 0.0000 | 0.8903 |
| 86.6667 | 1560 | 0.0554 | 0.0000 | 0.8903 |
| 87.2222 | 1570 | 0.021 | 0.0000 | 0.8903 |
| 87.7778 | 1580 | 0.029 | 0.0000 | 0.8903 |
| 88.3333 | 1590 | 0.0132 | 0.0000 | 0.8903 |
| 88.8889 | 1600 | 0.0339 | 0.0000 | 0.8903 |
| 89.4444 | 1610 | 0.0412 | 0.0000 | 0.8903 |
| 90.0 | 1620 | 0.0847 | 0.0000 | 0.8903 |
* The bold row denotes the saved checkpoint.
</details>
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.1.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### GISTEmbedLoss
```bibtex
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |