himanshu23099
commited on
Commit
•
33d85c5
1
Parent(s):
47045ec
Add new SentenceTransformer model
Browse files- README.md +362 -450
- config.json +1 -1
- config_sentence_transformers.json +4 -4
- model.safetensors +1 -1
README.md
CHANGED
@@ -1,5 +1,123 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
base_model: BAAI/bge-small-en-v1.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
library_name: sentence-transformers
|
4 |
metrics:
|
5 |
- cosine_accuracy@1
|
@@ -18,161 +136,6 @@ metrics:
|
|
18 |
- cosine_mrr@10
|
19 |
- cosine_mrr@100
|
20 |
- cosine_map@100
|
21 |
-
- dot_accuracy@1
|
22 |
-
- dot_accuracy@5
|
23 |
-
- dot_accuracy@10
|
24 |
-
- dot_precision@1
|
25 |
-
- dot_precision@5
|
26 |
-
- dot_precision@10
|
27 |
-
- dot_recall@1
|
28 |
-
- dot_recall@5
|
29 |
-
- dot_recall@10
|
30 |
-
- dot_ndcg@5
|
31 |
-
- dot_ndcg@10
|
32 |
-
- dot_ndcg@100
|
33 |
-
- dot_mrr@5
|
34 |
-
- dot_mrr@10
|
35 |
-
- dot_mrr@100
|
36 |
-
- dot_map@100
|
37 |
-
pipeline_tag: sentence-similarity
|
38 |
-
tags:
|
39 |
-
- sentence-transformers
|
40 |
-
- sentence-similarity
|
41 |
-
- feature-extraction
|
42 |
-
- generated_from_trainer
|
43 |
-
- dataset_size:563
|
44 |
-
- loss:GISTEmbedLoss
|
45 |
-
widget:
|
46 |
-
- source_sentence: Can I pay for parking using digital payment methods like UPI, credit/debit
|
47 |
-
cards, or mobile wallets?
|
48 |
-
sentences:
|
49 |
-
- The vibrant colors of autumn leaves create a breathtaking tapestry across the
|
50 |
-
landscape, reminding us of nature's artistry. Many people enjoy taking strolls
|
51 |
-
through parks to appreciate the crisp air and the sound of crunching leaves underfoot.
|
52 |
-
Some choose to photograph the scenery, capturing fleeting moments of beauty, while
|
53 |
-
others might indulge in seasonal treats like pumpkin spice lattes. Embracing the
|
54 |
-
change in seasons also encourages us to reflect on personal growth and the passage
|
55 |
-
of time as we move towards the winter months.
|
56 |
-
- Yes, most parking areas accept digital payment methods such as UPI, credit/debit
|
57 |
-
cards, or mobile wallets to facilitate cashless transactions. However, it is recommended
|
58 |
-
to carry some cash as a backup because digital payments might not always work
|
59 |
-
due to network issues and high crowd density during peak times.
|
60 |
-
- Mahakumbh 2025 will start on 13 January with the Paush Purnima bath and end on
|
61 |
-
26 February with the Mahashivratri bath.
|
62 |
-
- source_sentence: What is Aarti
|
63 |
-
sentences:
|
64 |
-
- No, shuttle buses will not have dedicated volunteers specifically, but for assistance,
|
65 |
-
you can reach out to the nearest information center.
|
66 |
-
- "In India, since ancient times, rivers are worshipped due to their importance\
|
67 |
-
\ to the human life. \n\nLikewise, in Tirathraj Prayagraj, Aartis’ are performed\
|
68 |
-
\ on the banks of Ganga, Yamuna and at Sangam with great admiration, deep-rooted\
|
69 |
-
\ honor and devotion. In Prayagraj, Prayagraj Mela Authority and various other\
|
70 |
-
\ communities make grand arrangements for these Aartis.\n\nThe Aartis are performed\
|
71 |
-
\ in the mornings and evenings, in which priests (Batuks), normally 5 to 7 in\
|
72 |
-
\ number, chant hymns with great fervor, holding meticulously designed lamps and\
|
73 |
-
\ worship the rivers with utmost devotion. \n\nThe lamps held by the batuks represent\
|
74 |
-
\ the importance of panchtatva. On one hand, flames of the lamps signify bowing\
|
75 |
-
\ to the waters of the sacred rivers and on the other, the holy fumes emanating\
|
76 |
-
\ from the lamps appear to play the mystic of heaven on earth."
|
77 |
-
- 'In the realm of celestial bodies, the moons of Jupiter captivate astronomers
|
78 |
-
with their striking variations. These natural satellites exhibit a diverse range
|
79 |
-
of landscapes, from the icy crust of Europa to the volcanic surface of Io, each
|
80 |
-
revealing secrets about the formation of our solar system.
|
81 |
-
|
82 |
-
|
83 |
-
In laboratories around the world, researchers utilize advanced telescopes, funded
|
84 |
-
by international space agencies, to monitor these moons, collecting data that
|
85 |
-
aids in understanding their geological processes. They examine topographical maps
|
86 |
-
and analyze spectrographs, revealing rich insights into the chemical compositions
|
87 |
-
present on these distant worlds.
|
88 |
-
|
89 |
-
|
90 |
-
Collaborations between scientists and institutions have led to remarkable discoveries,
|
91 |
-
including the potential for subsurface oceans beneath the icy shell of Europa,
|
92 |
-
stirring excitement about the possibility of extraterrestrial life. Meanwhile,
|
93 |
-
rumors of missions planned to explore these enigmatic moons intensify interest
|
94 |
-
in the ongoing quest for knowledge beyond our home planet.'
|
95 |
-
- source_sentence: Which all companies offer tour services?
|
96 |
-
sentences:
|
97 |
-
- There are no specific facilities exclusively for senior citizens at the Railway
|
98 |
-
Junction in relation to the Mela. However, most railway stations generally offer
|
99 |
-
basic amenities like wheelchairs, assistance for boarding and de-boarding, and
|
100 |
-
special seating areas for senior citizens or those with mobility issues. It is
|
101 |
-
advisable for senior citizens to check with the railway authorities for any additional
|
102 |
-
support that might be available during the Mela.
|
103 |
-
- The art of origami has captivated many enthusiasts around the world. Crafting
|
104 |
-
intricate designs from simple sheets of paper showcases creativity and precision.
|
105 |
-
Essential tools include sharp scissors, bone folders, and high-quality paper to
|
106 |
-
achieve the best results. Workshops often focus on advanced techniques, leading
|
107 |
-
to beautiful decorative pieces and useful items, enhancing the enjoyment of this
|
108 |
-
timeless craft.
|
109 |
-
- All information provided here includes tour services provided by UPSTDC (Uttar
|
110 |
-
Pradesh State Tourism Development Corporation). Additionally, popular platforms
|
111 |
-
like MakeMyTrip and other travel websites offer their own tour packages for Kumbh
|
112 |
-
Mela and nearby attractions. For a wider range of options, you can check these
|
113 |
-
services directly on their websites to find a tour that best suits your needs.
|
114 |
-
- source_sentence: From when to when is the Mela?
|
115 |
-
sentences:
|
116 |
-
- "Mahakumbh Mela 2025 will begin on 13 January with the Paush Purnima bath and\
|
117 |
-
\ will conclude on 26 February with the Mahashivratri bath.\n \n While every day\
|
118 |
-
\ during the Mahakumbh is considered auspicious for bathing, the main bathing\
|
119 |
-
\ festivals are as follows:\n \n 1. Paush Purnima – 13 January\n 2. Makar Sankranti\
|
120 |
-
\ – 14 January\n 3. Mauni Amavasya – 29 January\n 4. Vasant Panchami – 3 February\n\
|
121 |
-
\ 5. Maghi Purnima – 12 February\n 6. Mahashivratri – 26 February\n \n Out of\
|
122 |
-
\ these, three dates are Shahi Snan festivals, when the Akharas and saints proceed\
|
123 |
-
\ with grand processions for the bath:\n \n 1. Makar Sankranti – 14 January\n\
|
124 |
-
\ 2. Mauni Amavasya – 29 January\n 3. Vasant Panchami – 3 February"
|
125 |
-
- 'The sky today is filled with vibrant clouds, where shades of orange and pink
|
126 |
-
blend seamlessly into vast expanses of blue. The wind carries the sounds of distant
|
127 |
-
laughter, as children chase each other through sprawling fields of lush green
|
128 |
-
grass. Nearby, an old oak tree stands tall, its branches swaying gently and offering
|
129 |
-
shade to those seeking respite from the warmth of the sun.
|
130 |
-
|
131 |
-
|
132 |
-
A stream meanders through the landscape, its clear waters reflecting the brilliant
|
133 |
-
hues of the sky above. Dragonflies dart about, their iridescent wings catching
|
134 |
-
the light as they flit from flower to flower. In the distance, a family prepares
|
135 |
-
a picnic, the aroma of freshly baked bread mingling with the sweet scent of blooming
|
136 |
-
wildflowers.
|
137 |
-
|
138 |
-
|
139 |
-
As the afternoon stretches on, the sun begins its slow descent, painting the horizon
|
140 |
-
in richer tones. The air is filled with a sense of peace and joy, moments warm
|
141 |
-
with the laughter of friends and the thrill of nature''s beauty all around.'
|
142 |
-
- No, there is no special bus service specifically for women or families traveling
|
143 |
-
from the Bus Stand to the Mela. Shuttle buses would be available with fixed timings
|
144 |
-
and route plans which offer convenient travel
|
145 |
-
- source_sentence: What is the ritual of Snan or bathing?
|
146 |
-
sentences:
|
147 |
-
- Yes, luggage porter services are available at Prayagraj Junction for pilgrims
|
148 |
-
heading to the Mela. These porters, often referred to as coolies
|
149 |
-
- 'Taking bath at the confluence of Ganga, Yamuna and invisible Saraswati during
|
150 |
-
Mahakumbh has special significance. It is believed that by bathing in this holy
|
151 |
-
confluence, all the sins of a person are washed away and he attains salvation.
|
152 |
-
|
153 |
-
|
154 |
-
Bathing not only symbolizes personal purification, but it also conveys the message
|
155 |
-
of social harmony and unity, where people from different cultures and communities
|
156 |
-
come together to participate in this sacred ritual.
|
157 |
-
|
158 |
-
|
159 |
-
It is considered that in special circumstances, the water of rivers also acquires
|
160 |
-
a special life-giving quality, i.e. nectar, which not only leads to spiritual
|
161 |
-
development along with purification of the mind, but also gives physical benefits
|
162 |
-
by getting health.'
|
163 |
-
- 'The art of knitting is a fascinating hobby that allows individuals to create
|
164 |
-
beautiful and functional pieces from yarn. By intertwining strands of wool or
|
165 |
-
cotton, one can produce items ranging from scarves to intricate sweaters. This
|
166 |
-
craft has been passed down through generations, often bringing family members
|
167 |
-
together for cozy evenings filled with creativity and conversation.
|
168 |
-
|
169 |
-
|
170 |
-
Knitting not only provides a sense of accomplishment with every completed project
|
171 |
-
but also promotes focus and relaxation, making it an excellent activity for reducing
|
172 |
-
stress. Furthermore, the choice of colors and patterns can result in vibrant works
|
173 |
-
of art, showcasing the unique style and personality of the knitter. Engaging in
|
174 |
-
this craft often leads to new friendships within community groups that gather
|
175 |
-
to share techniques and ideas, fostering a sense of belonging among enthusiasts.'
|
176 |
model-index:
|
177 |
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
|
178 |
results:
|
@@ -184,101 +147,53 @@ model-index:
|
|
184 |
type: val_evaluator
|
185 |
metrics:
|
186 |
- type: cosine_accuracy@1
|
187 |
-
value: 0.
|
188 |
name: Cosine Accuracy@1
|
189 |
- type: cosine_accuracy@5
|
190 |
-
value: 0.
|
191 |
name: Cosine Accuracy@5
|
192 |
- type: cosine_accuracy@10
|
193 |
-
value:
|
194 |
name: Cosine Accuracy@10
|
195 |
- type: cosine_precision@1
|
196 |
-
value: 0.
|
197 |
name: Cosine Precision@1
|
198 |
- type: cosine_precision@5
|
199 |
-
value: 0.
|
200 |
name: Cosine Precision@5
|
201 |
- type: cosine_precision@10
|
202 |
-
value: 0.
|
203 |
name: Cosine Precision@10
|
204 |
- type: cosine_recall@1
|
205 |
-
value: 0.
|
206 |
name: Cosine Recall@1
|
207 |
- type: cosine_recall@5
|
208 |
-
value: 0.
|
209 |
name: Cosine Recall@5
|
210 |
- type: cosine_recall@10
|
211 |
-
value:
|
212 |
name: Cosine Recall@10
|
213 |
- type: cosine_ndcg@5
|
214 |
-
value: 0.
|
215 |
name: Cosine Ndcg@5
|
216 |
- type: cosine_ndcg@10
|
217 |
-
value: 0.
|
218 |
name: Cosine Ndcg@10
|
219 |
- type: cosine_ndcg@100
|
220 |
-
value: 0.
|
221 |
name: Cosine Ndcg@100
|
222 |
- type: cosine_mrr@5
|
223 |
-
value: 0.
|
224 |
name: Cosine Mrr@5
|
225 |
- type: cosine_mrr@10
|
226 |
-
value: 0.
|
227 |
name: Cosine Mrr@10
|
228 |
- type: cosine_mrr@100
|
229 |
-
value: 0.
|
230 |
name: Cosine Mrr@100
|
231 |
- type: cosine_map@100
|
232 |
-
value: 0.
|
233 |
name: Cosine Map@100
|
234 |
-
- type: dot_accuracy@1
|
235 |
-
value: 0.8156028368794326
|
236 |
-
name: Dot Accuracy@1
|
237 |
-
- type: dot_accuracy@5
|
238 |
-
value: 0.9929078014184397
|
239 |
-
name: Dot Accuracy@5
|
240 |
-
- type: dot_accuracy@10
|
241 |
-
value: 1.0
|
242 |
-
name: Dot Accuracy@10
|
243 |
-
- type: dot_precision@1
|
244 |
-
value: 0.8156028368794326
|
245 |
-
name: Dot Precision@1
|
246 |
-
- type: dot_precision@5
|
247 |
-
value: 0.1985815602836879
|
248 |
-
name: Dot Precision@5
|
249 |
-
- type: dot_precision@10
|
250 |
-
value: 0.09999999999999999
|
251 |
-
name: Dot Precision@10
|
252 |
-
- type: dot_recall@1
|
253 |
-
value: 0.8156028368794326
|
254 |
-
name: Dot Recall@1
|
255 |
-
- type: dot_recall@5
|
256 |
-
value: 0.9929078014184397
|
257 |
-
name: Dot Recall@5
|
258 |
-
- type: dot_recall@10
|
259 |
-
value: 1.0
|
260 |
-
name: Dot Recall@10
|
261 |
-
- type: dot_ndcg@5
|
262 |
-
value: 0.9154696629317853
|
263 |
-
name: Dot Ndcg@5
|
264 |
-
- type: dot_ndcg@10
|
265 |
-
value: 0.9179959550389344
|
266 |
-
name: Dot Ndcg@10
|
267 |
-
- type: dot_ndcg@100
|
268 |
-
value: 0.9179959550389344
|
269 |
-
name: Dot Ndcg@100
|
270 |
-
- type: dot_mrr@5
|
271 |
-
value: 0.8891252955082741
|
272 |
-
name: Dot Mrr@5
|
273 |
-
- type: dot_mrr@10
|
274 |
-
value: 0.8903073286052008
|
275 |
-
name: Dot Mrr@10
|
276 |
-
- type: dot_mrr@100
|
277 |
-
value: 0.8903073286052008
|
278 |
-
name: Dot Mrr@100
|
279 |
-
- type: dot_map@100
|
280 |
-
value: 0.8903073286052009
|
281 |
-
name: Dot Map@100
|
282 |
---
|
283 |
|
284 |
# SentenceTransformer based on BAAI/bge-small-en-v1.5
|
@@ -291,7 +206,7 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [B
|
|
291 |
- **Model Type:** Sentence Transformer
|
292 |
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
|
293 |
- **Maximum Sequence Length:** 512 tokens
|
294 |
-
- **Output Dimensionality:** 384
|
295 |
- **Similarity Function:** Cosine Similarity
|
296 |
<!-- - **Training Dataset:** Unknown -->
|
297 |
<!-- - **Language:** Unknown -->
|
@@ -331,9 +246,9 @@ from sentence_transformers import SentenceTransformer
|
|
331 |
model = SentenceTransformer("himanshu23099/bge_embedding_finetune_v3")
|
332 |
# Run inference
|
333 |
sentences = [
|
334 |
-
'
|
335 |
-
'
|
336 |
-
'
|
337 |
]
|
338 |
embeddings = model.encode(sentences)
|
339 |
print(embeddings.shape)
|
@@ -374,43 +289,28 @@ You can finetune this model on your own dataset.
|
|
374 |
### Metrics
|
375 |
|
376 |
#### Information Retrieval
|
|
|
377 |
* Dataset: `val_evaluator`
|
378 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
379 |
|
380 |
| Metric | Value |
|
381 |
|:--------------------|:-----------|
|
382 |
-
| cosine_accuracy@1 | 0.
|
383 |
-
| cosine_accuracy@5 | 0.
|
384 |
-
| cosine_accuracy@10 |
|
385 |
-
| cosine_precision@1 | 0.
|
386 |
-
| cosine_precision@5 | 0.
|
387 |
-
| cosine_precision@10 | 0.
|
388 |
-
| cosine_recall@1 | 0.
|
389 |
-
| cosine_recall@5 | 0.
|
390 |
-
| cosine_recall@10 |
|
391 |
-
| cosine_ndcg@5 | 0.
|
392 |
-
| cosine_ndcg@10 | 0.
|
393 |
-
| cosine_ndcg@100
|
394 |
-
| cosine_mrr@5 | 0.
|
395 |
-
| cosine_mrr@10 | 0.
|
396 |
-
| cosine_mrr@100 | 0.
|
397 |
-
|
|
398 |
-
| dot_accuracy@1 | 0.8156 |
|
399 |
-
| dot_accuracy@5 | 0.9929 |
|
400 |
-
| dot_accuracy@10 | 1.0 |
|
401 |
-
| dot_precision@1 | 0.8156 |
|
402 |
-
| dot_precision@5 | 0.1986 |
|
403 |
-
| dot_precision@10 | 0.1 |
|
404 |
-
| dot_recall@1 | 0.8156 |
|
405 |
-
| dot_recall@5 | 0.9929 |
|
406 |
-
| dot_recall@10 | 1.0 |
|
407 |
-
| dot_ndcg@5 | 0.9155 |
|
408 |
-
| dot_ndcg@10 | 0.918 |
|
409 |
-
| dot_ndcg@100 | 0.918 |
|
410 |
-
| dot_mrr@5 | 0.8891 |
|
411 |
-
| dot_mrr@10 | 0.8903 |
|
412 |
-
| dot_mrr@100 | 0.8903 |
|
413 |
-
| dot_map@100 | 0.8903 |
|
414 |
|
415 |
<!--
|
416 |
## Bias, Risks and Limitations
|
@@ -431,19 +331,19 @@ You can finetune this model on your own dataset.
|
|
431 |
#### Unnamed Dataset
|
432 |
|
433 |
|
434 |
-
* Size:
|
435 |
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
436 |
-
* Approximate statistics based on the first
|
437 |
-
| | anchor | positive
|
438 |
-
|
439 |
-
| type | string | string
|
440 |
-
| details | <ul><li>min:
|
441 |
* Samples:
|
442 |
-
| anchor
|
443 |
-
|
444 |
-
| <code>
|
445 |
-
| <code>
|
446 |
-
| <code>
|
447 |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
448 |
```json
|
449 |
{'guide': SentenceTransformer(
|
@@ -458,19 +358,19 @@ You can finetune this model on your own dataset.
|
|
458 |
#### Unnamed Dataset
|
459 |
|
460 |
|
461 |
-
* Size:
|
462 |
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
463 |
-
* Approximate statistics based on the first
|
464 |
-
| | anchor | positive
|
465 |
-
|
466 |
-
| type | string | string
|
467 |
-
| details | <ul><li>min:
|
468 |
* Samples:
|
469 |
-
| anchor
|
470 |
-
|
471 |
-
| <code>
|
472 |
-
| <code>
|
473 |
-
| <code>
|
474 |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
475 |
```json
|
476 |
{'guide': SentenceTransformer(
|
@@ -488,7 +388,7 @@ You can finetune this model on your own dataset.
|
|
488 |
- `gradient_accumulation_steps`: 2
|
489 |
- `learning_rate`: 1e-05
|
490 |
- `weight_decay`: 0.01
|
491 |
-
- `num_train_epochs`:
|
492 |
- `warmup_ratio`: 0.1
|
493 |
- `load_best_model_at_end`: True
|
494 |
|
@@ -512,7 +412,7 @@ You can finetune this model on your own dataset.
|
|
512 |
- `adam_beta2`: 0.999
|
513 |
- `adam_epsilon`: 1e-08
|
514 |
- `max_grad_norm`: 1.0
|
515 |
-
- `num_train_epochs`:
|
516 |
- `max_steps`: -1
|
517 |
- `lr_scheduler_type`: linear
|
518 |
- `lr_scheduler_kwargs`: {}
|
@@ -582,6 +482,7 @@ You can finetune this model on your own dataset.
|
|
582 |
- `gradient_checkpointing`: False
|
583 |
- `gradient_checkpointing_kwargs`: None
|
584 |
- `include_inputs_for_metrics`: False
|
|
|
585 |
- `eval_do_concat_batches`: True
|
586 |
- `fp16_backend`: auto
|
587 |
- `push_to_hub_model_id`: None
|
@@ -603,7 +504,10 @@ You can finetune this model on your own dataset.
|
|
603 |
- `optim_target_modules`: None
|
604 |
- `batch_eval_metrics`: False
|
605 |
- `eval_on_start`: False
|
|
|
606 |
- `eval_use_gather_object`: False
|
|
|
|
|
607 |
- `batch_sampler`: batch_sampler
|
608 |
- `multi_dataset_batch_sampler`: proportional
|
609 |
|
@@ -612,182 +516,190 @@ You can finetune this model on your own dataset.
|
|
612 |
### Training Logs
|
613 |
<details><summary>Click to expand</summary>
|
614 |
|
615 |
-
| Epoch
|
616 |
-
|
617 |
-
| 0.
|
618 |
-
|
|
619 |
-
|
|
620 |
-
|
|
621 |
-
|
|
622 |
-
|
|
623 |
-
|
|
624 |
-
|
|
625 |
-
|
|
626 |
-
|
|
627 |
-
|
|
628 |
-
|
|
629 |
-
|
|
630 |
-
|
|
631 |
-
|
|
632 |
-
|
|
633 |
-
|
|
634 |
-
|
|
635 |
-
|
|
636 |
-
|
|
637 |
-
|
|
638 |
-
|
|
639 |
-
|
|
640 |
-
|
|
641 |
-
|
|
642 |
-
|
|
643 |
-
|
|
644 |
-
|
|
645 |
-
|
|
646 |
-
|
|
647 |
-
|
|
648 |
-
|
|
649 |
-
|
|
650 |
-
|
|
651 |
-
|
|
652 |
-
|
|
653 |
-
|
|
654 |
-
|
|
655 |
-
|
|
656 |
-
|
|
657 |
-
|
|
658 |
-
|
|
659 |
-
|
|
660 |
-
|
|
661 |
-
|
|
662 |
-
|
|
663 |
-
|
|
664 |
-
|
|
665 |
-
|
|
666 |
-
|
|
667 |
-
|
|
668 |
-
|
|
669 |
-
|
|
670 |
-
|
|
671 |
-
|
|
672 |
-
|
|
673 |
-
|
|
674 |
-
|
|
675 |
-
|
|
676 |
-
|
|
677 |
-
|
|
678 |
-
|
|
679 |
-
|
|
680 |
-
|
|
681 |
-
|
|
682 |
-
|
|
683 |
-
|
|
684 |
-
|
|
685 |
-
|
|
686 |
-
|
|
687 |
-
|
|
688 |
-
|
|
689 |
-
|
|
690 |
-
|
|
691 |
-
|
|
692 |
-
|
|
693 |
-
|
|
694 |
-
|
|
695 |
-
|
|
696 |
-
|
|
697 |
-
|
|
698 |
-
|
|
699 |
-
|
|
700 |
-
|
|
701 |
-
|
|
702 |
-
|
|
703 |
-
|
|
704 |
-
|
|
705 |
-
|
|
706 |
-
|
|
707 |
-
|
|
708 |
-
|
|
709 |
-
|
|
710 |
-
|
|
711 |
-
|
|
712 |
-
|
|
713 |
-
|
|
714 |
-
|
|
715 |
-
|
|
716 |
-
|
|
717 |
-
|
|
718 |
-
|
|
719 |
-
|
|
720 |
-
|
|
721 |
-
|
|
722 |
-
|
|
723 |
-
|
|
724 |
-
|
|
725 |
-
|
|
726 |
-
|
|
727 |
-
|
|
728 |
-
|
|
729 |
-
|
|
730 |
-
|
|
731 |
-
|
|
732 |
-
|
|
733 |
-
|
|
734 |
-
|
|
735 |
-
|
|
736 |
-
|
|
737 |
-
|
|
738 |
-
|
|
739 |
-
|
|
740 |
-
|
|
741 |
-
|
|
742 |
-
|
|
743 |
-
|
|
744 |
-
|
|
745 |
-
|
|
746 |
-
|
|
747 |
-
|
|
748 |
-
|
|
749 |
-
|
|
750 |
-
|
|
751 |
-
|
|
752 |
-
|
|
753 |
-
|
|
754 |
-
|
|
755 |
-
|
|
756 |
-
|
|
757 |
-
|
|
758 |
-
|
|
759 |
-
|
|
760 |
-
|
|
761 |
-
|
|
762 |
-
|
|
763 |
-
|
|
764 |
-
|
|
765 |
-
|
|
766 |
-
|
|
767 |
-
|
|
768 |
-
|
|
769 |
-
|
|
770 |
-
|
|
771 |
-
|
|
772 |
-
|
|
773 |
-
|
|
774 |
-
|
|
775 |
-
|
|
776 |
-
|
|
777 |
-
|
|
778 |
-
|
|
779 |
-
|
780 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
781 |
</details>
|
782 |
|
783 |
### Framework Versions
|
784 |
- Python: 3.10.12
|
785 |
-
- Sentence Transformers: 3.
|
786 |
-
- Transformers: 4.
|
787 |
-
- PyTorch: 2.5.
|
788 |
-
- Accelerate:
|
789 |
- Datasets: 3.1.0
|
790 |
-
- Tokenizers: 0.
|
791 |
|
792 |
## Citation
|
793 |
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:3507
|
8 |
+
- loss:GISTEmbedLoss
|
9 |
base_model: BAAI/bge-small-en-v1.5
|
10 |
+
widget:
|
11 |
+
- source_sentence: What skills and traditions do the Akharas display?
|
12 |
+
sentences:
|
13 |
+
- "Are there specific vendors recommended for tent city booking?\n Yes, there are\
|
14 |
+
\ 7 approved vendors for setting up bookings in the Tent City for Kumbh Mela including\
|
15 |
+
\ : UP Tourism Tent Colony; Rishikul Kumbh Cottages; Aagman Maha Kumbh; Kumbh\
|
16 |
+
\ Village; Kumbh Camp India; Shivadya Kumbh Canvas. For more information about\
|
17 |
+
\ these vendors and their services, please click here"
|
18 |
+
- The Akharas display a wide range of skills and traditions that reflect their deep
|
19 |
+
spiritual heritage and ascetic practices. These include martial arts training,
|
20 |
+
such as wrestling, sword fighting, and the use of traditional weapons like tridents
|
21 |
+
(trishuls), maces (gada), and spears. Such skills symbolize their readiness to
|
22 |
+
protect Dharma and their spiritual communities. Additionally, Akharas emphasize
|
23 |
+
the tradition of Yoga and meditation, teaching various asanas and techniques for
|
24 |
+
self-discipline and spiritual growth. They also focus on Vedic rituals, chanting,
|
25 |
+
and sacred ceremonies to maintain their connection with the divine. Akharas uphold
|
26 |
+
the practice of 'Vairagya' or renunciation, where sadhus detach from worldly desires
|
27 |
+
to pursue a path of spiritual enlightenment. These traditions are on full display
|
28 |
+
during the Kumbh Mela, especially during the Shahi Snan, where the Naga Sadhus
|
29 |
+
lead the processions with their unique practices and skills.
|
30 |
+
- On a bright summer afternoon, the children gathered at the edge of the park, their
|
31 |
+
laughter echoing through the trees. They played games, running around with colorful
|
32 |
+
kites soaring high against the azure sky. Some kids chose to ride their bicycles
|
33 |
+
along the winding paths, while others set up a picnic with sandwiches and juice
|
34 |
+
boxes spread out on a checkered blanket. Nearby, a couple of dogs chased each
|
35 |
+
other joyfully, their tails wagging with uncontainable excitement as the scent
|
36 |
+
of fresh grass filled the air. The sun slowly dipped toward the horizon, casting
|
37 |
+
a warm golden glow, and everyone paused to watch the beauty of the sunset while
|
38 |
+
sharing stories, bonding over the simple joys of life. The day shimmered with
|
39 |
+
happiness, creating memories that would last long after the sun had set.
|
40 |
+
- source_sentence: Refund kab milega
|
41 |
+
sentences:
|
42 |
+
- "How late can I make changes to my booking before the tour date?\n Refunds and\
|
43 |
+
\ changes to bookings are subject to the following cancellation policy:\n \n 15\
|
44 |
+
\ days or more in advance: 90% of the booking amount will be refunded\n 10-15\
|
45 |
+
\ days in advance: 75% of the booking amount will be refunded\n 3-10 days in advance:\
|
46 |
+
\ 50% of the booking amount will be refunded\n Less than 3 days in advance: No\
|
47 |
+
\ refund\n \n Please make any changes or cancellations well in advance to avoid\
|
48 |
+
\ forfeiting your booking amount."
|
49 |
+
- "Is there any provision for women-only E-Rickshaws for added safety and comfort?\n\
|
50 |
+
\ No, there is no provision for women-only E-Rickshaws"
|
51 |
+
- 'Can I pay for the tour in installments?
|
52 |
+
|
53 |
+
No, the tour fee must be paid in full at the time of booking. Unfortunately, installment
|
54 |
+
plans are not available. Ensure that full payment is made to secure your booking
|
55 |
+
well in advance.'
|
56 |
+
- source_sentence: Are there any dedicated helpdesks or kiosks at the Airport for
|
57 |
+
information about transport to the Mela?
|
58 |
+
sentences:
|
59 |
+
- The forest is alive with the sounds of rustling leaves and chirping birds. As
|
60 |
+
the sun rises, a golden light filters through the trees, creating a magical atmosphere.
|
61 |
+
Walkers often find solace in nature, where the peaceful surroundings can soothe
|
62 |
+
the mind and inspire creativity. Each path taken may lead to a hidden waterfall
|
63 |
+
or a scenic overlook, inviting exploration and adventure.
|
64 |
+
- "What is Aarti\n In India, since ancient times, rivers are worshipped due to their\
|
65 |
+
\ importance to the human life. \n \n Likewise, in Tirathraj Prayagraj, Aartis’\
|
66 |
+
\ are performed on the banks of Ganga, Yamuna and at Sangam with great admiration,\
|
67 |
+
\ deep-rooted honor and devotion. In Prayagraj, Prayagraj Mela Authority and various\
|
68 |
+
\ other communities make grand arrangements for these Aartis.\n \n The Aartis\
|
69 |
+
\ are performed in the mornings and evenings, in which priests (Batuks), normally\
|
70 |
+
\ 5 to 7 in number, chant hymns with great fervor, holding meticulously designed\
|
71 |
+
\ lamps and worship the rivers with utmost devotion. \n \n The lamps held by the\
|
72 |
+
\ batuks represent the importance of panchtatva. On one hand, flames of the lamps\
|
73 |
+
\ signify bowing to the waters of the sacred rivers and on the other, the holy\
|
74 |
+
\ fumes emanating from the lamps appear to play the mystic of heaven on earth.\
|
75 |
+
\ \n List of Aliases: [['Prayag', 'Sangam'], ['Allahabad', 'PYG', 'Prayagraj'],\
|
76 |
+
\ ['Batuks', 'priests']]"
|
77 |
+
- Yes, there are people available to help you with transport information at the
|
78 |
+
airport. Tourist information centers would also be available across the city to
|
79 |
+
guide pilgrims to the Mela.
|
80 |
+
- source_sentence: Peeshwai Akhara time
|
81 |
+
sentences:
|
82 |
+
- "What is the connection between Akharas and Shahi Snan?\nAkharas are the central\
|
83 |
+
\ focus of the Shahi Snan during the Mahakumbh Mela. \U0001F549️\n \n The Akharas\
|
84 |
+
\ lead this ritual bath, with their Mahamandaleshwar taking the first dip in the\
|
85 |
+
\ sacred waters of the Sangam.\n \n The Akharas enter the bathing ghats in a grand\
|
86 |
+
\ procession, which includes chariots, elephants, horses, bands, and chanting\
|
87 |
+
\ saints and their followers."
|
88 |
+
- "When does Peshwai take place?\n The Peshwai of the Akharas is the first major\
|
89 |
+
\ attraction of the Mahakumbh. When the Akharas enter the Kumbh city with full\
|
90 |
+
\ grandeur, this is called the Peshwai. The Peshwai of each Akhara is conducted\
|
91 |
+
\ with proper rituals before the fair officially begins. \n List of Aliases:\
|
92 |
+
\ [['Peshwai', 'entry of Akharas with full grandeur', 'event', 'first major attraction\
|
93 |
+
\ of the Mahakumbh'], ['Akhada Darshan', 'Akharas'], , ['Akhand', 'Akhara', 'Kalpwasi\
|
94 |
+
\ Camp', 'Naga', 'Nagas', 'Sadhu', 'sadhus']]"
|
95 |
+
- Yes, towing services are available if your vehicle breaks down in the parking
|
96 |
+
lot.
|
97 |
+
- source_sentence: How long does it typically take to enter or exit the parking area
|
98 |
+
during peak times?
|
99 |
+
sentences:
|
100 |
+
- In a remote village, the annual kite festival attracts many visitors who come
|
101 |
+
to see the vibrant displays. The event showcases dozens of kites soaring high,
|
102 |
+
each crafted with unique designs. Local artisans prepare for months, selecting
|
103 |
+
colors and materials to make the best creations. Everyone enjoys the lively atmosphere
|
104 |
+
filled with music and laughter.
|
105 |
+
- 'What is the history and significance of the University of Allahabad?
|
106 |
+
|
107 |
+
Established in 1887, University of Allahabad is a prestigious educational institution.
|
108 |
+
It has a grand campus with prominent architectural structures:
|
109 |
+
|
110 |
+
The Science Faculty, formerly known as Muir Central College, is a notable building
|
111 |
+
showcasing Indo-Saracenic architecture. The structure includes a central 200 ft.
|
112 |
+
tower, and the interiors are adorned with marble and mosaic from Mirzapur.
|
113 |
+
|
114 |
+
The Arts Faculty and other buildings, constructed between 1910 and 1915, are renowned
|
115 |
+
for their architectural significance. It’s also historically significant as Rudyard
|
116 |
+
Kipling stayed here during 1888-89.'
|
117 |
+
- The time to enter or exit the parking area during peak times can vary based on
|
118 |
+
crowd density, time of day, and traffic management. Generally, it takes about
|
119 |
+
2 to 10 minutes.
|
120 |
+
pipeline_tag: sentence-similarity
|
121 |
library_name: sentence-transformers
|
122 |
metrics:
|
123 |
- cosine_accuracy@1
|
|
|
136 |
- cosine_mrr@10
|
137 |
- cosine_mrr@100
|
138 |
- cosine_map@100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
model-index:
|
140 |
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
|
141 |
results:
|
|
|
147 |
type: val_evaluator
|
148 |
metrics:
|
149 |
- type: cosine_accuracy@1
|
150 |
+
value: 0.3443557582668187
|
151 |
name: Cosine Accuracy@1
|
152 |
- type: cosine_accuracy@5
|
153 |
+
value: 0.7229190421892816
|
154 |
name: Cosine Accuracy@5
|
155 |
- type: cosine_accuracy@10
|
156 |
+
value: 0.8038768529076397
|
157 |
name: Cosine Accuracy@10
|
158 |
- type: cosine_precision@1
|
159 |
+
value: 0.3443557582668187
|
160 |
name: Cosine Precision@1
|
161 |
- type: cosine_precision@5
|
162 |
+
value: 0.14458380843785631
|
163 |
name: Cosine Precision@5
|
164 |
- type: cosine_precision@10
|
165 |
+
value: 0.08038768529076395
|
166 |
name: Cosine Precision@10
|
167 |
- type: cosine_recall@1
|
168 |
+
value: 0.3443557582668187
|
169 |
name: Cosine Recall@1
|
170 |
- type: cosine_recall@5
|
171 |
+
value: 0.7229190421892816
|
172 |
name: Cosine Recall@5
|
173 |
- type: cosine_recall@10
|
174 |
+
value: 0.8038768529076397
|
175 |
name: Cosine Recall@10
|
176 |
- type: cosine_ndcg@5
|
177 |
+
value: 0.5504290811876199
|
178 |
name: Cosine Ndcg@5
|
179 |
- type: cosine_ndcg@10
|
180 |
+
value: 0.5765613499697346
|
181 |
name: Cosine Ndcg@10
|
182 |
- type: cosine_ndcg@100
|
183 |
+
value: 0.614171229811746
|
184 |
name: Cosine Ndcg@100
|
185 |
- type: cosine_mrr@5
|
186 |
+
value: 0.4926263778031162
|
187 |
name: Cosine Mrr@5
|
188 |
- type: cosine_mrr@10
|
189 |
+
value: 0.5033795768402376
|
190 |
name: Cosine Mrr@10
|
191 |
- type: cosine_mrr@100
|
192 |
+
value: 0.5113051664568566
|
193 |
name: Cosine Mrr@100
|
194 |
- type: cosine_map@100
|
195 |
+
value: 0.5113051664568576
|
196 |
name: Cosine Map@100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
---
|
198 |
|
199 |
# SentenceTransformer based on BAAI/bge-small-en-v1.5
|
|
|
206 |
- **Model Type:** Sentence Transformer
|
207 |
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
|
208 |
- **Maximum Sequence Length:** 512 tokens
|
209 |
+
- **Output Dimensionality:** 384 dimensions
|
210 |
- **Similarity Function:** Cosine Similarity
|
211 |
<!-- - **Training Dataset:** Unknown -->
|
212 |
<!-- - **Language:** Unknown -->
|
|
|
246 |
model = SentenceTransformer("himanshu23099/bge_embedding_finetune_v3")
|
247 |
# Run inference
|
248 |
sentences = [
|
249 |
+
'How long does it typically take to enter or exit the parking area during peak times?',
|
250 |
+
'The time to enter or exit the parking area during peak times can vary based on crowd density, time of day, and traffic management. Generally, it takes about 2 to 10 minutes.',
|
251 |
+
'In a remote village, the annual kite festival attracts many visitors who come to see the vibrant displays. The event showcases dozens of kites soaring high, each crafted with unique designs. Local artisans prepare for months, selecting colors and materials to make the best creations. Everyone enjoys the lively atmosphere filled with music and laughter.',
|
252 |
]
|
253 |
embeddings = model.encode(sentences)
|
254 |
print(embeddings.shape)
|
|
|
289 |
### Metrics
|
290 |
|
291 |
#### Information Retrieval
|
292 |
+
|
293 |
* Dataset: `val_evaluator`
|
294 |
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
295 |
|
296 |
| Metric | Value |
|
297 |
|:--------------------|:-----------|
|
298 |
+
| cosine_accuracy@1 | 0.3444 |
|
299 |
+
| cosine_accuracy@5 | 0.7229 |
|
300 |
+
| cosine_accuracy@10 | 0.8039 |
|
301 |
+
| cosine_precision@1 | 0.3444 |
|
302 |
+
| cosine_precision@5 | 0.1446 |
|
303 |
+
| cosine_precision@10 | 0.0804 |
|
304 |
+
| cosine_recall@1 | 0.3444 |
|
305 |
+
| cosine_recall@5 | 0.7229 |
|
306 |
+
| cosine_recall@10 | 0.8039 |
|
307 |
+
| cosine_ndcg@5 | 0.5504 |
|
308 |
+
| cosine_ndcg@10 | 0.5766 |
|
309 |
+
| **cosine_ndcg@100** | **0.6142** |
|
310 |
+
| cosine_mrr@5 | 0.4926 |
|
311 |
+
| cosine_mrr@10 | 0.5034 |
|
312 |
+
| cosine_mrr@100 | 0.5113 |
|
313 |
+
| cosine_map@100 | 0.5113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
<!--
|
316 |
## Bias, Risks and Limitations
|
|
|
331 |
#### Unnamed Dataset
|
332 |
|
333 |
|
334 |
+
* Size: 3,507 training samples
|
335 |
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
336 |
+
* Approximate statistics based on the first 1000 samples:
|
337 |
+
| | anchor | positive | negative |
|
338 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
|
339 |
+
| type | string | string | string |
|
340 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 12.02 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 117.69 tokens</li><li>max: 504 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 119.62 tokens</li><li>max: 422 tokens</li></ul> |
|
341 |
* Samples:
|
342 |
+
| anchor | positive | negative |
|
343 |
+
|:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
344 |
+
| <code>Tour departs how city</code> | <code>What is the itinerary for 1-day Maihar tour?<br> Maihar tour departs from Hotel Ilawart, Prayagraj at 7:00 AM and includes visit to Maa Sharda Devi Temple located atop Trikoota Hill. For more details and booking, click here: https://bit.ly/3YBcbI6 <br> List of Aliases: [['Allahabad', 'PYG', 'Prayagraj']]</code> | <code>What one-day outstation tours are available from Prayagraj?<br>The one-day outstation tours from Prayagraj include destinations such as Ayodhya, Varanasi, Maihar, and Chitrakoot. These tours offer a quick yet enriching journey to some of the most significant spiritual and cultural sites near Prayagraj.<br><br>For more details, visit : https://bit.ly/4eWFRoH</code> |
|
345 |
+
| <code>How train for Prayag reach</code> | <code>Which airlines operate flights to Prayagraj?<br> Several airlines operate flights to Prayagraj, India. However, availability may depend on your location and the time of travel. Some of the airlines that typically operate flights to Prayagraj include:<br> <br> 1. Air India<br> 2. IndiGo<br> 3. SpiceJet<br> <br> For the most accurate and up-to-date information on train timings to Prayagraj, please visit the IRCTC website <https://www.irctc.co.in/nget/> <br> List of Aliases: [['Allahabad', 'PYG', 'Prayagraj']]</code> | <code>What is the best train route to Prayagraj from Ayodhya?<br>To travel by train from Ayodhya to Prayagraj, you can use the Indian Railways' services. Here is a general guide for the route:<br><br>1. Ayodhya Cantt (AY) to Prayagraj Junction (PRYJ) via Train No. 14203: This is one of the direct trains to Prayagraj from Ayodhya. It generally runs on Tuesday and Friday.<br><br>2. Ayodhya Cantt (AY) to Prayagraj Rambag (PRRB) via Train No. 14205: This train runs regularly and is another direct route to Prayagraj.<br><br>For the most accurate and up-to-date information on train timings to Prayagraj, please visit the IRCTC website <https://www.irctc.co.in/nget/></code> |
|
346 |
+
| <code>Why should one do the Prayagraj Panchkoshi Parikrama?</code> | <code>The Prayagraj Panchkoshi Parikrama is a deeply revered spiritual journey that offers multiple benefits to devotees. It is believed to grant blessings equivalent to visiting all sacred pilgrimage sites in India, providing divine grace and spiritual merit. The Parikrama route covers significant temples like the Dwadash Madhav temples, Akshayavat, and Mankameshwar, which are steeped in Hindu mythology and history, allowing pilgrims to connect with the spiritual and cultural heritage of Prayagraj. This circumambulation around sacred sites is also seen as a way to cleanse one's sins and progress towards Moksha (liberation from the cycle of birth and rebirth), making it a path of introspection and spiritual growth. The pilgrimage fosters unity among people from diverse backgrounds, offering a unique cultural exchange and shared spiritual experience. By participating, devotees also help revive an ancient tradition integral to the Kumbh Mela for centuries, reconnecting with age-old practices t...</code> | <code>Elevators are remarkable inventions that revolutionized how we navigate tall buildings. They provide a swift, efficient means of transportation between floors, making urban life more accessible. These mechanical wonders operate on a system of pulleys and counterweights, enabling them to carry heavy loads effortlessly. Safety features like emergency brakes and backup power systems ensure that passengers remain secure during their journey. Various designs and styles can be seen in buildings around the world, from sleek modern glass models to vintage models that evoke nostalgia. Elevators also highlight the advancement of engineering and technology over time, evolving from rudimentary designs to sophisticated machines with smart technology. They are essential in various settings, including residential, commercial, and industrial spaces, offering convenience and practicality. Their presence also allows for the efficient use of vertical space, fostering creativity in architectural designs a...</code> |
|
347 |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
348 |
```json
|
349 |
{'guide': SentenceTransformer(
|
|
|
358 |
#### Unnamed Dataset
|
359 |
|
360 |
|
361 |
+
* Size: 877 evaluation samples
|
362 |
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
363 |
+
* Approximate statistics based on the first 877 samples:
|
364 |
+
| | anchor | positive | negative |
|
365 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
366 |
+
| type | string | string | string |
|
367 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 12.13 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 117.82 tokens</li><li>max: 504 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 117.68 tokens</li><li>max: 422 tokens</li></ul> |
|
368 |
* Samples:
|
369 |
+
| anchor | positive | negative |
|
370 |
+
|:-------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
371 |
+
| <code>Akhara means what</code> | <code>Is the word Akhara related to Akhand?<br> Many scholars believe that the word 'Akhara' originated from the word 'Akhand.' Initially, a group of armed ascetics was referred to as 'Akhand.' Over time, when these 'Akhand' groups evolved into centers for training in weaponry and martial arts, they came to be known as 'Akhara.' <br> List of Aliases: [['Akhand', 'Akhara', 'Kalpwasi Camp', 'Naga', 'Nagas', 'Sadhu', 'sadhus']]</code> | <code>Why did Adi Shankaracharya organize the Akharas?<br>According to the evidence available in the Akharas and the descriptions mentioned in their history, centuries ago, Adi Shankaracharya established these Akharas with the purpose of protecting Hindu temples and monasteries from foreign and non-believer invaders, as well as safeguarding the followers of Hinduism.<br> <br> Adi Shankaracharya believed that young saints should not only be proficient in scriptures (Shastra) but also in the art of weaponry (Shastra), so they could fulfill the duty of protecting the monasteries, temples, and their followers when necessary.</code> |
|
372 |
+
| <code>Why do so many people gather for this?</code> | <code>Millions gather for the Kumbh Mela due to its profound spiritual, cultural, and social significance. Rooted in ancient Hindu mythology, the Mela is believed to be an auspicious time when bathing in the sacred rivers—Ganga, Yamuna, and Saraswati—can cleanse sins and lead to spiritual liberation (Moksha). The event, occurring during rare celestial alignments, amplifies these spiritual benefits. It is a unique confluence of faith, where people from diverse backgrounds come together, creating a “mini-India” that fosters unity in diversity. \n The Mela also offers opportunities for spiritual learning through discourses by saints, religious rituals like Kalpvas, Deep Daan, and cultural performances. Moreover, the Kumbh Mela is a rare platform for connecting with spiritual leaders, experiencing religious tolerance, and participating in one of the world's largest peaceful gatherings, making it a must-attend event for millions seeking spiritual growth, community, and divine blessings.</code> | <code>In the bustling world of urban development, architects and city planners often seek innovative solutions to optimize living spaces. The integration of green spaces within urban environments not only enhances aesthetic appeal but also significantly improves residents' quality of life. Vertical gardens, rooftops, and community parks play a crucial role in providing habitats for local wildlife while promoting biodiversity in densely populated areas. <br><br>Furthermore, advancements in sustainable technology, such as solar panels and rainwater harvesting systems, are being incorporated into these designs, offering environmentally friendly alternatives that reduce utility costs for residents. Public art installations also contribute to community identity, fostering a sense of belonging among citizens. <br><br>Collaborative efforts between various stakeholders—governments, private sectors, and local communities—are essential to ensure these projects reflect the needs and desires of the people. The succ...</code> |
|
373 |
+
| <code>Do parking charges vary between different parking zones or proximity to the Mela grounds?</code> | <code>No, the parking charges are standardized and remain the same throughout, regardless of the parking zone or proximity to the Mela grounds. Charges are fixed at ₹5 for cycles, ₹15 for two-wheelers, ₹65 for 3-4 wheelers, and ₹260 for buses and heavy vehicles for 24 hours.</code> | <code>The ancient art of pottery involves molding clay into various shapes before firing it in a kiln. Traditionally, artisans use hand tools and techniques passed down through generations. Each region often has its own distinctive styles, resulting in a rich diversity of forms, glazes, and colors. Pottery can serve practical purposes, such as in cooking and storage, while also being a medium for artistic expression and cultural storytelling.</code> |
|
374 |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
375 |
```json
|
376 |
{'guide': SentenceTransformer(
|
|
|
388 |
- `gradient_accumulation_steps`: 2
|
389 |
- `learning_rate`: 1e-05
|
390 |
- `weight_decay`: 0.01
|
391 |
+
- `num_train_epochs`: 30
|
392 |
- `warmup_ratio`: 0.1
|
393 |
- `load_best_model_at_end`: True
|
394 |
|
|
|
412 |
- `adam_beta2`: 0.999
|
413 |
- `adam_epsilon`: 1e-08
|
414 |
- `max_grad_norm`: 1.0
|
415 |
+
- `num_train_epochs`: 30
|
416 |
- `max_steps`: -1
|
417 |
- `lr_scheduler_type`: linear
|
418 |
- `lr_scheduler_kwargs`: {}
|
|
|
482 |
- `gradient_checkpointing`: False
|
483 |
- `gradient_checkpointing_kwargs`: None
|
484 |
- `include_inputs_for_metrics`: False
|
485 |
+
- `include_for_metrics`: []
|
486 |
- `eval_do_concat_batches`: True
|
487 |
- `fp16_backend`: auto
|
488 |
- `push_to_hub_model_id`: None
|
|
|
504 |
- `optim_target_modules`: None
|
505 |
- `batch_eval_metrics`: False
|
506 |
- `eval_on_start`: False
|
507 |
+
- `use_liger_kernel`: False
|
508 |
- `eval_use_gather_object`: False
|
509 |
+
- `average_tokens_across_devices`: False
|
510 |
+
- `prompts`: None
|
511 |
- `batch_sampler`: batch_sampler
|
512 |
- `multi_dataset_batch_sampler`: proportional
|
513 |
|
|
|
516 |
### Training Logs
|
517 |
<details><summary>Click to expand</summary>
|
518 |
|
519 |
+
| Epoch | Step | Training Loss | Validation Loss | val_evaluator_cosine_ndcg@100 |
|
520 |
+
|:-------:|:----:|:-------------:|:---------------:|:-----------------------------:|
|
521 |
+
| 0.0909 | 10 | 1.9717 | 1.2192 | 0.4285 |
|
522 |
+
| 0.1818 | 20 | 1.8228 | 1.1896 | 0.4307 |
|
523 |
+
| 0.2727 | 30 | 1.9999 | 1.1429 | 0.4310 |
|
524 |
+
| 0.3636 | 40 | 1.6463 | 1.0845 | 0.4311 |
|
525 |
+
| 0.4545 | 50 | 1.9207 | 1.0205 | 0.4334 |
|
526 |
+
| 0.5455 | 60 | 1.5777 | 0.9509 | 0.4338 |
|
527 |
+
| 0.6364 | 70 | 1.4277 | 0.8810 | 0.4376 |
|
528 |
+
| 0.7273 | 80 | 1.408 | 0.8130 | 0.4432 |
|
529 |
+
| 0.8182 | 90 | 1.3565 | 0.7535 | 0.4436 |
|
530 |
+
| 0.9091 | 100 | 1.3322 | 0.6935 | 0.4495 |
|
531 |
+
| 1.0 | 110 | 0.8344 | 0.6420 | 0.4518 |
|
532 |
+
| 1.0909 | 120 | 1.1696 | 0.5956 | 0.4515 |
|
533 |
+
| 1.1818 | 130 | 0.9622 | 0.5524 | 0.4565 |
|
534 |
+
| 1.2727 | 140 | 0.9005 | 0.5173 | 0.4616 |
|
535 |
+
| 1.3636 | 150 | 0.962 | 0.4802 | 0.4662 |
|
536 |
+
| 1.4545 | 160 | 0.7924 | 0.4497 | 0.4693 |
|
537 |
+
| 1.5455 | 170 | 0.8955 | 0.4262 | 0.4711 |
|
538 |
+
| 1.6364 | 180 | 0.7652 | 0.4031 | 0.4736 |
|
539 |
+
| 1.7273 | 190 | 0.7517 | 0.3804 | 0.4773 |
|
540 |
+
| 1.8182 | 200 | 0.5669 | 0.3636 | 0.4784 |
|
541 |
+
| 1.9091 | 210 | 0.6641 | 0.3469 | 0.4813 |
|
542 |
+
| 2.0 | 220 | 0.5227 | 0.3267 | 0.4820 |
|
543 |
+
| 2.0909 | 230 | 0.6146 | 0.3075 | 0.4843 |
|
544 |
+
| 2.1818 | 240 | 0.4709 | 0.2908 | 0.4882 |
|
545 |
+
| 2.2727 | 250 | 0.5963 | 0.2780 | 0.4955 |
|
546 |
+
| 2.3636 | 260 | 0.5103 | 0.2668 | 0.4977 |
|
547 |
+
| 2.4545 | 270 | 0.4833 | 0.2566 | 0.5027 |
|
548 |
+
| 2.5455 | 280 | 0.4389 | 0.2431 | 0.5045 |
|
549 |
+
| 2.6364 | 290 | 0.4653 | 0.2317 | 0.5059 |
|
550 |
+
| 2.7273 | 300 | 0.3559 | 0.2263 | 0.5086 |
|
551 |
+
| 2.8182 | 310 | 0.4623 | 0.2197 | 0.5127 |
|
552 |
+
| 2.9091 | 320 | 0.3889 | 0.2103 | 0.5183 |
|
553 |
+
| 3.0 | 330 | 0.4014 | 0.2037 | 0.5206 |
|
554 |
+
| 3.0909 | 340 | 0.2977 | 0.1999 | 0.5228 |
|
555 |
+
| 3.1818 | 350 | 0.4656 | 0.1956 | 0.5266 |
|
556 |
+
| 3.2727 | 360 | 0.436 | 0.1873 | 0.5288 |
|
557 |
+
| 3.3636 | 370 | 0.3111 | 0.1803 | 0.5311 |
|
558 |
+
| 3.4545 | 380 | 0.333 | 0.1759 | 0.5325 |
|
559 |
+
| 3.5455 | 390 | 0.2899 | 0.1717 | 0.5381 |
|
560 |
+
| 3.6364 | 400 | 0.4245 | 0.1663 | 0.5419 |
|
561 |
+
| 3.7273 | 410 | 0.4247 | 0.1658 | 0.5421 |
|
562 |
+
| 3.8182 | 420 | 0.2251 | 0.1646 | 0.5442 |
|
563 |
+
| 3.9091 | 430 | 0.2784 | 0.1635 | 0.5448 |
|
564 |
+
| 4.0 | 440 | 0.2503 | 0.1613 | 0.5490 |
|
565 |
+
| 4.0909 | 450 | 0.2342 | 0.1588 | 0.5501 |
|
566 |
+
| 4.1818 | 460 | 0.3139 | 0.1584 | 0.5527 |
|
567 |
+
| 4.2727 | 470 | 0.2356 | 0.1552 | 0.5498 |
|
568 |
+
| 4.3636 | 480 | 0.3147 | 0.1496 | 0.5518 |
|
569 |
+
| 4.4545 | 490 | 0.2691 | 0.1469 | 0.5508 |
|
570 |
+
| 4.5455 | 500 | 0.2639 | 0.1466 | 0.5561 |
|
571 |
+
| 4.6364 | 510 | 0.1581 | 0.1432 | 0.5625 |
|
572 |
+
| 4.7273 | 520 | 0.1922 | 0.1406 | 0.5663 |
|
573 |
+
| 4.8182 | 530 | 0.2453 | 0.1406 | 0.5688 |
|
574 |
+
| 4.9091 | 540 | 0.2631 | 0.1399 | 0.5705 |
|
575 |
+
| 5.0 | 550 | 0.3324 | 0.1402 | 0.5681 |
|
576 |
+
| 5.0909 | 560 | 0.1801 | 0.1389 | 0.5715 |
|
577 |
+
| 5.1818 | 570 | 0.2096 | 0.1371 | 0.5736 |
|
578 |
+
| 5.2727 | 580 | 0.2167 | 0.1344 | 0.5743 |
|
579 |
+
| 5.3636 | 590 | 0.1553 | 0.1297 | 0.5791 |
|
580 |
+
| 5.4545 | 600 | 0.1903 | 0.1263 | 0.5790 |
|
581 |
+
| 5.5455 | 610 | 0.1388 | 0.1241 | 0.5816 |
|
582 |
+
| 5.6364 | 620 | 0.2642 | 0.1231 | 0.5809 |
|
583 |
+
| 5.7273 | 630 | 0.2119 | 0.1238 | 0.5792 |
|
584 |
+
| 5.8182 | 640 | 0.1767 | 0.1216 | 0.5809 |
|
585 |
+
| 5.9091 | 650 | 0.2167 | 0.1218 | 0.5810 |
|
586 |
+
| 6.0 | 660 | 0.26 | 0.1232 | 0.5793 |
|
587 |
+
| 6.0909 | 670 | 0.1603 | 0.1222 | 0.5807 |
|
588 |
+
| 6.1818 | 680 | 0.1534 | 0.1209 | 0.5794 |
|
589 |
+
| 6.2727 | 690 | 0.1742 | 0.1165 | 0.5821 |
|
590 |
+
| 6.3636 | 700 | 0.1133 | 0.1120 | 0.5824 |
|
591 |
+
| 6.4545 | 710 | 0.1198 | 0.1106 | 0.5817 |
|
592 |
+
| 6.5455 | 720 | 0.2019 | 0.1114 | 0.5832 |
|
593 |
+
| 6.6364 | 730 | 0.2268 | 0.1116 | 0.5823 |
|
594 |
+
| 6.7273 | 740 | 0.1779 | 0.1077 | 0.5887 |
|
595 |
+
| 6.8182 | 750 | 0.1586 | 0.1048 | 0.5892 |
|
596 |
+
| 6.9091 | 760 | 0.2074 | 0.1057 | 0.5872 |
|
597 |
+
| 7.0 | 770 | 0.1625 | 0.1091 | 0.5881 |
|
598 |
+
| 7.0909 | 780 | 0.2266 | 0.1079 | 0.5900 |
|
599 |
+
| 7.1818 | 790 | 0.148 | 0.1054 | 0.5895 |
|
600 |
+
| 7.2727 | 800 | 0.1248 | 0.1048 | 0.5916 |
|
601 |
+
| 7.3636 | 810 | 0.1753 | 0.1047 | 0.5956 |
|
602 |
+
| 7.4545 | 820 | 0.109 | 0.1045 | 0.5981 |
|
603 |
+
| 7.5455 | 830 | 0.1369 | 0.1056 | 0.5953 |
|
604 |
+
| 7.6364 | 840 | 0.1209 | 0.1068 | 0.5946 |
|
605 |
+
| 7.7273 | 850 | 0.182 | 0.1079 | 0.5952 |
|
606 |
+
| 7.8182 | 860 | 0.1116 | 0.1083 | 0.5978 |
|
607 |
+
| 7.9091 | 870 | 0.1813 | 0.1033 | 0.5985 |
|
608 |
+
| 8.0 | 880 | 0.1559 | 0.1010 | 0.6027 |
|
609 |
+
| 8.0909 | 890 | 0.1384 | 0.1019 | 0.6017 |
|
610 |
+
| 8.1818 | 900 | 0.1057 | 0.1034 | 0.6004 |
|
611 |
+
| 8.2727 | 910 | 0.1359 | 0.1033 | 0.5994 |
|
612 |
+
| 8.3636 | 920 | 0.0909 | 0.1008 | 0.6011 |
|
613 |
+
| 8.4545 | 930 | 0.0995 | 0.0986 | 0.6030 |
|
614 |
+
| 8.5455 | 940 | 0.1261 | 0.0973 | 0.6046 |
|
615 |
+
| 8.6364 | 950 | 0.1031 | 0.0955 | 0.6013 |
|
616 |
+
| 8.7273 | 960 | 0.1163 | 0.0949 | 0.6018 |
|
617 |
+
| 8.8182 | 970 | 0.1493 | 0.0963 | 0.6041 |
|
618 |
+
| 8.9091 | 980 | 0.13 | 0.0967 | 0.6044 |
|
619 |
+
| 9.0 | 990 | 0.1059 | 0.0937 | 0.6044 |
|
620 |
+
| 9.0909 | 1000 | 0.1287 | 0.0923 | 0.6045 |
|
621 |
+
| 9.1818 | 1010 | 0.1019 | 0.0924 | 0.6086 |
|
622 |
+
| 9.2727 | 1020 | 0.1645 | 0.0921 | 0.6086 |
|
623 |
+
| 9.3636 | 1030 | 0.1395 | 0.0931 | 0.6075 |
|
624 |
+
| 9.4545 | 1040 | 0.1067 | 0.0935 | 0.6051 |
|
625 |
+
| 9.5455 | 1050 | 0.1334 | 0.0930 | 0.6058 |
|
626 |
+
| 9.6364 | 1060 | 0.136 | 0.0919 | 0.6069 |
|
627 |
+
| 9.7273 | 1070 | 0.0968 | 0.0930 | 0.6052 |
|
628 |
+
| 9.8182 | 1080 | 0.1447 | 0.0946 | 0.6077 |
|
629 |
+
| 9.9091 | 1090 | 0.1288 | 0.0967 | 0.6049 |
|
630 |
+
| 10.0 | 1100 | 0.1001 | 0.0960 | 0.6034 |
|
631 |
+
| 10.0909 | 1110 | 0.1642 | 0.0952 | 0.6000 |
|
632 |
+
| 10.1818 | 1120 | 0.1737 | 0.0926 | 0.6028 |
|
633 |
+
| 10.2727 | 1130 | 0.1283 | 0.0906 | 0.6023 |
|
634 |
+
| 10.3636 | 1140 | 0.0959 | 0.0906 | 0.6073 |
|
635 |
+
| 10.4545 | 1150 | 0.0875 | 0.0927 | 0.6065 |
|
636 |
+
| 10.5455 | 1160 | 0.1284 | 0.0934 | 0.6058 |
|
637 |
+
| 10.6364 | 1170 | 0.1482 | 0.0937 | 0.6049 |
|
638 |
+
| 10.7273 | 1180 | 0.1089 | 0.0925 | 0.6018 |
|
639 |
+
| 10.8182 | 1190 | 0.0876 | 0.0896 | 0.6068 |
|
640 |
+
| 10.9091 | 1200 | 0.0849 | 0.0897 | 0.6062 |
|
641 |
+
| 11.0 | 1210 | 0.1041 | 0.0897 | 0.6073 |
|
642 |
+
| 11.0909 | 1220 | 0.107 | 0.0889 | 0.6043 |
|
643 |
+
| 11.1818 | 1230 | 0.1018 | 0.0868 | 0.6059 |
|
644 |
+
| 11.2727 | 1240 | 0.0835 | 0.0846 | 0.6106 |
|
645 |
+
| 11.3636 | 1250 | 0.1455 | 0.0831 | 0.6069 |
|
646 |
+
| 11.4545 | 1260 | 0.1071 | 0.0832 | 0.6051 |
|
647 |
+
| 11.5455 | 1270 | 0.0777 | 0.0839 | 0.6054 |
|
648 |
+
| 11.6364 | 1280 | 0.1218 | 0.0855 | 0.6051 |
|
649 |
+
| 11.7273 | 1290 | 0.0702 | 0.0862 | 0.6048 |
|
650 |
+
| 11.8182 | 1300 | 0.1017 | 0.0865 | 0.6068 |
|
651 |
+
| 11.9091 | 1310 | 0.1452 | 0.0860 | 0.6074 |
|
652 |
+
| 12.0 | 1320 | 0.1563 | 0.0855 | 0.6073 |
|
653 |
+
| 12.0909 | 1330 | 0.1026 | 0.0858 | 0.6102 |
|
654 |
+
| 12.1818 | 1340 | 0.108 | 0.0861 | 0.6062 |
|
655 |
+
| 12.2727 | 1350 | 0.078 | 0.0854 | 0.6055 |
|
656 |
+
| 12.3636 | 1360 | 0.0655 | 0.0847 | 0.6082 |
|
657 |
+
| 12.4545 | 1370 | 0.1075 | 0.0836 | 0.6085 |
|
658 |
+
| 12.5455 | 1380 | 0.0875 | 0.0846 | 0.6049 |
|
659 |
+
| 12.6364 | 1390 | 0.1082 | 0.0828 | 0.6096 |
|
660 |
+
| 12.7273 | 1400 | 0.1133 | 0.0816 | 0.6077 |
|
661 |
+
| 12.8182 | 1410 | 0.0931 | 0.0814 | 0.6106 |
|
662 |
+
| 12.9091 | 1420 | 0.0728 | 0.0818 | 0.6085 |
|
663 |
+
| 13.0 | 1430 | 0.1338 | 0.0827 | 0.6082 |
|
664 |
+
| 13.0909 | 1440 | 0.1232 | 0.0813 | 0.6076 |
|
665 |
+
| 13.1818 | 1450 | 0.093 | 0.0796 | 0.6110 |
|
666 |
+
| 13.2727 | 1460 | 0.0994 | 0.0793 | 0.6090 |
|
667 |
+
| 13.3636 | 1470 | 0.0424 | 0.0806 | 0.6109 |
|
668 |
+
| 13.4545 | 1480 | 0.0598 | 0.0833 | 0.6086 |
|
669 |
+
| 13.5455 | 1490 | 0.0813 | 0.0841 | 0.6093 |
|
670 |
+
| 13.6364 | 1500 | 0.0913 | 0.0817 | 0.6125 |
|
671 |
+
| 13.7273 | 1510 | 0.1048 | 0.0801 | 0.6133 |
|
672 |
+
| 13.8182 | 1520 | 0.0503 | 0.0800 | 0.6110 |
|
673 |
+
| 13.9091 | 1530 | 0.0954 | 0.0800 | 0.6111 |
|
674 |
+
| 14.0 | 1540 | 0.067 | 0.0791 | 0.6099 |
|
675 |
+
| 14.0909 | 1550 | 0.0808 | 0.0779 | 0.6111 |
|
676 |
+
| 14.1818 | 1560 | 0.1047 | 0.0783 | 0.6110 |
|
677 |
+
| 14.2727 | 1570 | 0.0685 | 0.0791 | 0.6125 |
|
678 |
+
| 14.3636 | 1580 | 0.1215 | 0.0793 | 0.6120 |
|
679 |
+
| 14.4545 | 1590 | 0.0761 | 0.0794 | 0.6157 |
|
680 |
+
| 14.5455 | 1600 | 0.0705 | 0.0790 | 0.6136 |
|
681 |
+
| 14.6364 | 1610 | 0.0722 | 0.0785 | 0.6098 |
|
682 |
+
| 14.7273 | 1620 | 0.0881 | 0.0785 | 0.6120 |
|
683 |
+
| 14.8182 | 1630 | 0.0668 | 0.0791 | 0.6122 |
|
684 |
+
| 14.9091 | 1640 | 0.1261 | 0.0787 | 0.6152 |
|
685 |
+
| 15.0 | 1650 | 0.0601 | 0.0784 | 0.6148 |
|
686 |
+
| 15.0909 | 1660 | 0.0701 | 0.0799 | 0.6167 |
|
687 |
+
| 15.1818 | 1670 | 0.1244 | 0.0794 | 0.6160 |
|
688 |
+
| 15.2727 | 1680 | 0.0531 | 0.0788 | 0.6174 |
|
689 |
+
| 15.3636 | 1690 | 0.0518 | 0.0780 | 0.6154 |
|
690 |
+
| 15.4545 | 1700 | 0.0961 | 0.0784 | 0.6142 |
|
691 |
+
| 15.5455 | 1710 | 0.1041 | - | - |
|
692 |
+
|
693 |
</details>
|
694 |
|
695 |
### Framework Versions
|
696 |
- Python: 3.10.12
|
697 |
+
- Sentence Transformers: 3.3.0
|
698 |
+
- Transformers: 4.46.2
|
699 |
+
- PyTorch: 2.5.1+cu121
|
700 |
+
- Accelerate: 1.1.1
|
701 |
- Datasets: 3.1.0
|
702 |
+
- Tokenizers: 0.20.3
|
703 |
|
704 |
## Citation
|
705 |
|
config.json
CHANGED
@@ -24,7 +24,7 @@
|
|
24 |
"pad_token_id": 0,
|
25 |
"position_embedding_type": "absolute",
|
26 |
"torch_dtype": "float32",
|
27 |
-
"transformers_version": "4.
|
28 |
"type_vocab_size": 2,
|
29 |
"use_cache": true,
|
30 |
"vocab_size": 30522
|
|
|
24 |
"pad_token_id": 0,
|
25 |
"position_embedding_type": "absolute",
|
26 |
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.46.2",
|
28 |
"type_vocab_size": 2,
|
29 |
"use_cache": true,
|
30 |
"vocab_size": 30522
|
config_sentence_transformers.json
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
-
"sentence_transformers": "3.
|
4 |
-
"transformers": "4.
|
5 |
-
"pytorch": "2.5.
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|
9 |
-
"similarity_fn_name":
|
10 |
}
|
|
|
1 |
{
|
2 |
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.0",
|
4 |
+
"transformers": "4.46.2",
|
5 |
+
"pytorch": "2.5.1+cu121"
|
6 |
},
|
7 |
"prompts": {},
|
8 |
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
}
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 133462128
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94adacda2ea8c6ad6837c2c1636afacb8ae8f0ad0661fe6d28fcd9526ce9f191
|
3 |
size 133462128
|