himanshuch8055 commited on
Commit
fec3b29
·
1 Parent(s): b0073d4

Add-README.md

Browse files
Files changed (2) hide show
  1. README.md +81 -0
  2. first.text +0 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # 🧠 UNet Fibril Segmentation Model
2
+
3
+ ![UNet Fibril Segmentation Banner](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/model-card-image-placeholder.png)
4
+
5
+ A **UNet-based deep learning model** trained for **semantic segmentation of fibrillar structures** in **single-molecule fluorescence microscopy images**. This model is specifically designed to identify and segment **amyloid fibrils**, which are critical in research related to neurodegenerative diseases such as Alzheimer’s.
6
+
7
+ ---
8
+
9
+ ## 🔬 Model Overview
10
+
11
+ - **Architecture**: [UNet](https://arxiv.org/abs/1505.04597)
12
+ - **Encoder**: ResNet34 (pretrained on ImageNet)
13
+ - **Input Channels**: 1 (grayscale)
14
+ - **Output**: Binary mask of fibril regions
15
+ - **Loss Function**: BCEWithLogitsLoss / Dice Loss (combined)
16
+ - **Framework**: PyTorch + [segmentation_models.pytorch](https://github.com/qubvel/segmentation_models.pytorch)
17
+
18
+ ---
19
+
20
+ ## 🧠 Use Case
21
+
22
+ The model is built for biomedical researchers and computer vision practitioners working in:
23
+
24
+ - **Neuroscience research** (e.g., Alzheimer's, Parkinson’s)
25
+ - **Amyloid aggregation studies**
26
+ - **Single-molecule fluorescence microscopy**
27
+ - **Self-supervised denoising + segmentation pipelines**
28
+
29
+ ---
30
+
31
+ ## 🧪 Dataset
32
+
33
+ The model was trained on a curated dataset of **fluorescence microscopy images** annotated for fibrillar structures. Images were grayscale, of size `512x512` or `256x256`, manually labeled using Fiji/ImageJ or custom annotation tools.
34
+
35
+ *Note: If you're a researcher and would like to contribute more annotated data or collaborate on a dataset release, please reach out.*
36
+
37
+ ---
38
+
39
+ ## 📦 Files
40
+
41
+ - `unet_fibril_seg_model.pth` — Trained PyTorch weights
42
+ - `inference.py` — Inference script for running the model
43
+ - `preprocessing.py` — Image normalization and transforms
44
+
45
+ ---
46
+
47
+ ## 🖼️ Example
48
+
49
+ ```python
50
+ import torch
51
+ import numpy as np
52
+ from PIL import Image
53
+ from torchvision import transforms
54
+ import segmentation_models_pytorch as smp
55
+
56
+ # Load model
57
+ model = smp.Unet(
58
+ encoder_name="resnet34",
59
+ encoder_weights="imagenet",
60
+ in_channels=1,
61
+ classes=1,
62
+ )
63
+ model.load_state_dict(torch.load("unet_fibril_seg_model.pth", map_location="cpu"))
64
+ model.eval()
65
+
66
+ # Load image
67
+ img = Image.open("test_image.png").convert("L")
68
+ transform = transforms.Compose([
69
+ transforms.Resize((256, 256)),
70
+ transforms.ToTensor()
71
+ ])
72
+ input_tensor = transform(img).unsqueeze(0)
73
+
74
+ # Predict
75
+ with torch.no_grad():
76
+ pred = model(input_tensor)
77
+ pred_mask = torch.sigmoid(pred).squeeze().numpy()
78
+ binary_mask = (pred_mask > 0.5).astype(np.uint8)
79
+
80
+ # Save output
81
+ Image.fromarray(binary_mask * 255).save("predicted_mask.png")
first.text DELETED
File without changes