hiranhsw commited on
Commit
b052c83
·
1 Parent(s): 6e26775

PPO LunarLander-v2 trained agent version 3

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 275.79 +/- 25.84
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 281.85 +/- 13.71
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6b1bdfb440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6b1bdfb4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6b1bdfb560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6b1bdfb5f0>", "_build": "<function ActorCriticPolicy._build at 0x7f6b1bdfb680>", "forward": "<function ActorCriticPolicy.forward at 0x7f6b1bdfb710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6b1bdfb7a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6b1bdfb830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6b1bdfb8c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6b1bdfb950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6b1bdfb9e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6b1be4d390>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652298474.9657133, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWV5gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyMCiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMC4KCiAgICAgICAgOnBhcmFtIHByb2dyZXNzX3JlbWFpbmluZzoKICAgICAgICA6cmV0dXJuOiBjdXJyZW50IGxlYXJuaW5nIHJhdGUKICAgICAgICCUhZQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMHzxpcHl0aG9uLWlucHV0LTIxLTQ3Mzg0ODBlMDkxYj6UjARmdW5jlEsQQwIAB5SMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoF2gPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoDIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgqdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAqMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV5gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyMCiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMC4KCiAgICAgICAgOnBhcmFtIHByb2dyZXNzX3JlbWFpbmluZzoKICAgICAgICA6cmV0dXJuOiBjdXJyZW50IGxlYXJuaW5nIHJhdGUKICAgICAgICCUhZQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMHzxpcHl0aG9uLWlucHV0LTIxLTQ3Mzg0ODBlMDkxYj6UjARmdW5jlEsQQwIAB5SMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoF2gPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoDIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgqdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAqMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHq2HL6taqw/8JTtvnX//77ECVK+XJIivgAAAAAAAAAAul4wvi0lQT5aQMk+DCuYvip8iLr+kjA+AAAAAAAAAACzjZC9zyhNvDJGbr1hA+m6Zw60PehRvjsAAIA/AACAPwDKjz0doqU+84cNvak/477xH/Y7O6zfOwAAAAAAAAAAmv38PI9uTbr4tZc7qxwFOSUGwTruXze6AACAPwAAgD9a4YU9D5YnvO0kfL7xOGo95YeUPeCFirsAAIA/AAAAAO5/hL4si/s+4H7CvPzMD7/3QZ++fX7VPQAAAAAAAAAAQMGyPT8KXj91RE49J0kfv/jvxT0etYk9AAAAAAAAAAAzufo9WuCYP8tBvD5CTyu/NctMPkoIOz4AAAAAAAAAABrqVD2L8wg/UQ+4PIvwHb83N5c9cgdIvQAAAAAAAAAA1pSgPqwJ4z4JaAS+aRL2vr6glj6OS869AAAAAAAAAABjlYo+OyWGP0uZzj6/Fy+/iYq/PiUNJD4AAAAAAAAAAJrAS71WQds+pfO6PUYa3r4j3fy8B3y8PAAAAAAAAAAAmuM9vI/CcbhdBmiz+t/xriPULbt72cMzAACAPwAAgD9m6HW9w0Fsulow27ydr4Ix9kR4OqpK77MAAIA/AACAP6CUib5KFAo/NU5uvdZBEr+NT6G+Uly6PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8X7cfnlqcECUhpRSlIwBbJRL8YwBdJRHQJ0M27nPmgd1fZQoaAZoCWgPQwijztxDwntzQJSGlFKUaBVL42gWR0CdDVGVRk3CdX2UKGgGaAloD0MInzpWKf13cECUhpRSlGgVS81oFkdAnQ2JOBUaQ3V9lChoBmgJaA9DCPiL2ZJVHHFAlIaUUpRoFUvOaBZHQJ0Nzj81n/V1fZQoaAZoCWgPQwhUw35PrBVxQJSGlFKUaBVLumgWR0CdDjSHM2WIdX2UKGgGaAloD0MIFR40uy7JcECUhpRSlGgVS9RoFkdAnQ5FSCOFQHV9lChoBmgJaA9DCDoi36WUhHFAlIaUUpRoFU0uAWgWR0CdDpb9qDbrdX2UKGgGaAloD0MIgPJ37yh3cUCUhpRSlGgVS8RoFkdAnQ6wNkOI7HV9lChoBmgJaA9DCEWDFDxF/XBAlIaUUpRoFUvJaBZHQJ0PFbA1vVF1fZQoaAZoCWgPQwjjqUcaHF5yQJSGlFKUaBVLvGgWR0CdDz0u14PgdX2UKGgGaAloD0MIjWFO0Cbtc0CUhpRSlGgVTRQBaBZHQJ0PQbtJFsp1fZQoaAZoCWgPQwigwhGkEntyQJSGlFKUaBVLxGgWR0CdD5At4A0bdX2UKGgGaAloD0MIAaYMHJBycECUhpRSlGgVS6toFkdAnQ+QbADaG3V9lChoBmgJaA9DCK946pHGM3FAlIaUUpRoFUvQaBZHQJ0Pqee4Cp51fZQoaAZoCWgPQwgZVvFGJuBxQJSGlFKUaBVNBAFoFkdAnRAwQQL/j3V9lChoBmgJaA9DCO888ZytuG9AlIaUUpRoFUuraBZHQJ0QOzeGfwt1fZQoaAZoCWgPQwgxPzc0JV5xQJSGlFKUaBVL3WgWR0CdEPrpqynldX2UKGgGaAloD0MIyCWOPBBXS0CUhpRSlGgVS5NoFkdAnRET0xubZ3V9lChoBmgJaA9DCOKrHcV51XFAlIaUUpRoFUvEaBZHQJ0RoF4cFQl1fZQoaAZoCWgPQwhTsTGvo6NxQJSGlFKUaBVL3mgWR0CdEeonKGL2dX2UKGgGaAloD0MI41XWNkVwcUCUhpRSlGgVS7poFkdAnRJXMEA5rHV9lChoBmgJaA9DCBd/2xOkOXFAlIaUUpRoFUvUaBZHQJ0SYDB/I811fZQoaAZoCWgPQwg98gcDT5ZyQJSGlFKUaBVNFwFoFkdAnRLujZcs2HV9lChoBmgJaA9DCG6+Ed2zVXBAlIaUUpRoFUuuaBZHQJ0TEwmE5AB1fZQoaAZoCWgPQwhpyHiUCptxQJSGlFKUaBVLzGgWR0CdEyvLX+VDdX2UKGgGaAloD0MIGHrE6LlucECUhpRSlGgVS79oFkdAnRNudPLxJHV9lChoBmgJaA9DCCL99nXg5W9AlIaUUpRoFUu/aBZHQJ1bRPuXu3N1fZQoaAZoCWgPQwgdO6jEtbVwQJSGlFKUaBVNGAFoFkdAnVvwvL5h0HV9lChoBmgJaA9DCMDtCRIbPXJAlIaUUpRoFUv5aBZHQJ1cAgaFVT91fZQoaAZoCWgPQwjpKt1dZ7dzQJSGlFKUaBVNAQFoFkdAnVwuZ9d/rnV9lChoBmgJaA9DCGYwRiQKoXFAlIaUUpRoFUvyaBZHQJ1c54Oc2BJ1fZQoaAZoCWgPQwi37XvUnxVxQJSGlFKUaBVLzWgWR0CdXPwco6S1dX2UKGgGaAloD0MI0SAFTyG8cECUhpRSlGgVTQ8BaBZHQJ1dmJfpljF1fZQoaAZoCWgPQwgfgxWn2k9wQJSGlFKUaBVLzGgWR0CdXfilSCOFdX2UKGgGaAloD0MIwOjy5jDpcUCUhpRSlGgVS/hoFkdAnV4P779AHHV9lChoBmgJaA9DCD55WKi1inBAlIaUUpRoFUu9aBZHQJ1eI0k4WDZ1fZQoaAZoCWgPQwivX7AbdlRxQJSGlFKUaBVL5WgWR0CdXkCyhSLqdX2UKGgGaAloD0MIwqVjznN+cUCUhpRSlGgVS8loFkdAnV81gx8D0XV9lChoBmgJaA9DCLcKYqArL3FAlIaUUpRoFUvwaBZHQJ1fNgH/tIF1fZQoaAZoCWgPQwgwR4/f22xwQJSGlFKUaBVLxmgWR0CdX4SCOFQEdX2UKGgGaAloD0MIwylz843hcECUhpRSlGgVS+VoFkdAnV+Oo99tuXV9lChoBmgJaA9DCEeTizHwcXBAlIaUUpRoFUvnaBZHQJ1fuhN/OMV1fZQoaAZoCWgPQwi8yW/RiZlzQJSGlFKUaBVL9GgWR0CdYEwSJ0nxdX2UKGgGaAloD0MIVkRN9Hm6bkCUhpRSlGgVS79oFkdAnWD5NoJzDHV9lChoBmgJaA9DCBYwgVv3rnNAlIaUUpRoFUvsaBZHQJ1g/e9Ba9t1fZQoaAZoCWgPQwhYqDXNu81yQJSGlFKUaBVL6GgWR0CdYRcY64lQdX2UKGgGaAloD0MITyDsFOvSckCUhpRSlGgVS/5oFkdAnWFH5rP+oHV9lChoBmgJaA9DCF3g8lhzvnFAlIaUUpRoFUubaBZHQJ1hVf9gndB1fZQoaAZoCWgPQwhYchWL34ByQJSGlFKUaBVL1WgWR0CdYXb70nPWdX2UKGgGaAloD0MIc9cS8kEXP0CUhpRSlGgVS3poFkdAnWHtDlYEGXV9lChoBmgJaA9DCOoj8IdfEXFAlIaUUpRoFUvSaBZHQJ1h6qtHQQd1fZQoaAZoCWgPQwiSdqOP+RBxQJSGlFKUaBVLxmgWR0CdYgB3zMA4dX2UKGgGaAloD0MI/BwfLY7vcUCUhpRSlGgVS9BoFkdAnWJwj6eoUHV9lChoBmgJaA9DCGqlEMilqXJAlIaUUpRoFUvqaBZHQJ1ixfeDWbx1fZQoaAZoCWgPQwgvxOqPcN9wQJSGlFKUaBVLv2gWR0CdYvHR1HOKdX2UKGgGaAloD0MIVz82yY+Nc0CUhpRSlGgVS+doFkdAnWO66reZX3V9lChoBmgJaA9DCJ5i1SAMUHJAlIaUUpRoFUvlaBZHQJ1j/fZVXFN1fZQoaAZoCWgPQwiL+iR3WBJzQJSGlFKUaBVL6mgWR0CdZFBaLXMAdX2UKGgGaAloD0MIFqOutXebcUCUhpRSlGgVS9NoFkdAnWR056t1ZHV9lChoBmgJaA9DCDm1M0ytiXNAlIaUUpRoFUvKaBZHQJ1k8Ajps411fZQoaAZoCWgPQwjZI9QMadZwQJSGlFKUaBVL0GgWR0CdZQ0h/y5JdX2UKGgGaAloD0MIT7FqECYvckCUhpRSlGgVS8VoFkdAnWUi6Ymb9nV9lChoBmgJaA9DCKFI93MKpnFAlIaUUpRoFUvWaBZHQJ1lRe5WilB1fZQoaAZoCWgPQwg5K6ImOrtwQJSGlFKUaBVLs2gWR0CdZYx0uDjBdX2UKGgGaAloD0MIlUkNbYDeckCUhpRSlGgVS95oFkdAnWXOMhouf3V9lChoBmgJaA9DCD48S5BRI3NAlIaUUpRoFUvmaBZHQJ1l0xvegth1fZQoaAZoCWgPQwjfxftx+wlwQJSGlFKUaBVLs2gWR0CdZfTtb9qDdX2UKGgGaAloD0MISl0yjpHOTUCUhpRSlGgVS35oFkdAnWaJdWyTp3V9lChoBmgJaA9DCKgeaXDb8HJAlIaUUpRoFUvoaBZHQJ1mi8J2MbZ1fZQoaAZoCWgPQwhbttYXCe9tQJSGlFKUaBVLwGgWR0CdZs1UEPlNdX2UKGgGaAloD0MIMGXggJYickCUhpRSlGgVS+NoFkdAnWdPx6OYIHV9lChoBmgJaA9DCPzIrUm3QHJAlIaUUpRoFUvAaBZHQJ1nmxzJZGN1fZQoaAZoCWgPQwjLn28LFv9uQJSGlFKUaBVLu2gWR0CdaBP9DQZ5dX2UKGgGaAloD0MIsRafAmALckCUhpRSlGgVS+ZoFkdAnWkq8UVSGnV9lChoBmgJaA9DCNdnzvoUnXJAlIaUUpRoFUvMaBZHQJ1pPL1VYIV1fZQoaAZoCWgPQwieJF0zOUtyQJSGlFKUaBVL02gWR0CdaUdmg8KYdX2UKGgGaAloD0MIvDsyVtt/ckCUhpRSlGgVS9RoFkdAnWmtQCSzPnV9lChoBmgJaA9DCIZzDTP0n3FAlIaUUpRoFUviaBZHQJ1p1XnyNGV1fZQoaAZoCWgPQwiRmKCGr+tzQJSGlFKUaBVLw2gWR0CdafCvX9R8dX2UKGgGaAloD0MIlPqytNOKcECUhpRSlGgVS85oFkdAnWometjkMnV9lChoBmgJaA9DCFUxlX5CinNAlIaUUpRoFUvYaBZHQJ1qi5hBqsV1fZQoaAZoCWgPQwjq6o7FdiFxQJSGlFKUaBVL3WgWR0Cda0SGahHtdX2UKGgGaAloD0MITpmbb8TfcUCUhpRSlGgVS9FoFkdAnWtOVopQUHV9lChoBmgJaA9DCL7cJ0dBmXFAlIaUUpRoFUvSaBZHQJ1r6zw+dLB1fZQoaAZoCWgPQwh0forjQOlxQJSGlFKUaBVLtWgWR0CdbB6Tnq3WdX2UKGgGaAloD0MIpyOAm4WHcUCUhpRSlGgVS85oFkdAnWwrdFfAsXV9lChoBmgJaA9DCOT1YFJ8VnBAlIaUUpRoFU1AAWgWR0CdbG8kleF+dX2UKGgGaAloD0MIq7TFNb7lcECUhpRSlGgVS8poFkdAnW3MPatcOnV9lChoBmgJaA9DCJ+RCI0gYXFAlIaUUpRoFUvfaBZHQJ1uMm5UcXF1fZQoaAZoCWgPQwg6lQwAFb5wQJSGlFKUaBVL42gWR0CdbmNbTtsvdX2UKGgGaAloD0MImpfD7nuYc0CUhpRSlGgVTU8CaBZHQJ1udp8F6iV1fZQoaAZoCWgPQwh0DMheL01xQJSGlFKUaBVLzWgWR0Cdbpkv9LpSdX2UKGgGaAloD0MIYCFzZRBBc0CUhpRSlGgVS9poFkdAnW8XBHkLhXV9lChoBmgJaA9DCLdDw2KUSHNAlIaUUpRoFUvuaBZHQJ1vMvugHu91fZQoaAZoCWgPQwhHPNnNDMtxQJSGlFKUaBVLsGgWR0Cdb0mmtQsPdX2UKGgGaAloD0MI2PSgoJRPcECUhpRSlGgVS/toFkdAnW9UJv5xi3V9lChoBmgJaA9DCIj1Rq0wGXJAlIaUUpRoFUvWaBZHQJ1vYpe/pMZ1fZQoaAZoCWgPQwhKJxJM9QpxQJSGlFKUaBVLxWgWR0Cdb6OyVv/BdX2UKGgGaAloD0MIPStpxXefc0CUhpRSlGgVTbUBaBZHQJ1v/V9Wp611fZQoaAZoCWgPQwh73LdaJ/VvQJSGlFKUaBVLu2gWR0Cdb/rGipNsdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 1024, "gamma": 0.9995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa2d6e1c290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa2d6e1c320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa2d6e1c3b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa2d6e1c440>", "_build": "<function ActorCriticPolicy._build at 0x7fa2d6e1c4d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa2d6e1c560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa2d6e1c5f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa2d6e1c680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa2d6e1c710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa2d6e1c7a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa2d6e1c830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa2d6e5cd20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1016000, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652303410.1914387, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyMCiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMC4KCiAgICAgICAgOnBhcmFtIHByb2dyZXNzX3JlbWFpbmluZzoKICAgICAgICA6cmV0dXJuOiBjdXJyZW50IGxlYXJuaW5nIHJhdGUKICAgICAgICCUhZQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMHzxpcHl0aG9uLWlucHV0LTM4LWQ5MTM2ZjY2YjMxZT6UjARmdW5jlEsQQwIAB5SMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoF2gPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoK3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyMCiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMC4KCiAgICAgICAgOnBhcmFtIHByb2dyZXNzX3JlbWFpbmluZzoKICAgICAgICA6cmV0dXJuOiBjdXJyZW50IGxlYXJuaW5nIHJhdGUKICAgICAgICCUhZQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMHzxpcHl0aG9uLWlucHV0LTM4LWQ5MTM2ZjY2YjMxZT6UjARmdW5jlEsQQwIAB5SMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoF2gPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoK3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZNPD32bEK6ScyAN5GApzLjM6850VaXtgAAgD8AAIA/GqyMvcdHRj9TpfS9K8MUv0y4C75g8U69AAAAAAAAAADNxXg9qELjPpImn70U4Q+/IiruPG+zFb0AAAAAAAAAAE0pJ71rGZk+o1uLvBQEyr7DiyK9/OuFuwAAAAAAAAAAMxMtPYnxMD0ogVO+khaSvqHZDL6QbuC8AAAAAAAAAACAByC+blGqP84Yub6SXSe/Bj91vrC8dr0AAAAAAAAAALM0T73zSfU+ngNJPI+eC785tSW9s4HovAAAAAAAAAAA5mifvRRw67oRCYC9NB2UPKQzBzxrKoC9AACAPwAAgD/mWgC9DBITP6PIJD10DQy/w6jfvMDkADwAAAAAAAAAAKoxZ77V0gA/DJbAPMBTBb+qMXC+ZCS9PQAAAAAAAAAAc7j0PQfFgj+DGMs9rpQ0vztIRz7FxCU9AAAAAAAAAABNJLe95KGEPW34bj5E+3m+bs0GPkalXT0AAAAAAAAAAAAk3j2KSkg86qWPvjXHbL5eduy9meujvQAAAAAAAAAA7T1rPmcsMj+zLN880GgVv9eknD6adH29AAAAAAAAAABmEEU8KIvSPtSmGrxfCsu+iYWuPC5fMj0AAAAAAAAAADO78TyPXk66r1uDu6M9gDIgCm86KgUHtAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.15349333333333337, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqRWm73XscECUhpRSlIwBbJRLzYwBdJRHQLt6E1e0G/x1fZQoaAZoCWgPQwg0aOifYBh0QJSGlFKUaBVL4mgWR0C7ehIQWepXdX2UKGgGaAloD0MIXmiu04iacUCUhpRSlGgVS69oFkdAu3oeVcD8tXV9lChoBmgJaA9DCE1lUdjFvXFAlIaUUpRoFUvVaBZHQLt6IPbO/tZ1fZQoaAZoCWgPQwivCP63EqxvQJSGlFKUaBVLxmgWR0C7eiNfb9IgdX2UKGgGaAloD0MI5Q0w852tb0CUhpRSlGgVS85oFkdAu3opWDHwPXV9lChoBmgJaA9DCNYZ3xdXDHJAlIaUUpRoFUvUaBZHQLt6REwFkhB1fZQoaAZoCWgPQwhh304iglBzQJSGlFKUaBVL6GgWR0C7el/Z/Tb4dX2UKGgGaAloD0MI7WKa6Z7gcUCUhpRSlGgVS9doFkdAu3pnBRAKOXV9lChoBmgJaA9DCP1pozpdJXJAlIaUUpRoFUvjaBZHQLt6hN4qwyJ1fZQoaAZoCWgPQwhtjnObcOhyQJSGlFKUaBVL0GgWR0C7etGL5ylvdX2UKGgGaAloD0MI/+bFiW//cECUhpRSlGgVS75oFkdAu3reL0jC53V9lChoBmgJaA9DCDOpoQ0AY3JAlIaUUpRoFUveaBZHQLt6+7aZhKF1fZQoaAZoCWgPQwgr3PKRlMVyQJSGlFKUaBVLuGgWR0C7ewS4rjHXdX2UKGgGaAloD0MIQBL27WRLcUCUhpRSlGgVS+doFkdAu3sNpvgm7nV9lChoBmgJaA9DCDFfXoD953FAlIaUUpRoFUvBaBZHQLt7EE6kqMF1fZQoaAZoCWgPQwiwHCED+RByQJSGlFKUaBVLw2gWR0C7eyRdhRZVdX2UKGgGaAloD0MI9gt2w7bYcECUhpRSlGgVS75oFkdAu3skfDDTB3V9lChoBmgJaA9DCATltn2PlHFAlIaUUpRoFUvgaBZHQLt7Jh+OOsF1fZQoaAZoCWgPQwjSAUnYN8twQJSGlFKUaBVLx2gWR0C7eyf9P1tgdX2UKGgGaAloD0MIA5gycMCeb0CUhpRSlGgVS/poFkdAu3tBFI/Z/XV9lChoBmgJaA9DCJcbDHXYPG5AlIaUUpRoFUvjaBZHQLt7SWH1vl51fZQoaAZoCWgPQwhp/pjW5stxQJSGlFKUaBVLz2gWR0C7e1ZSeiBYdX2UKGgGaAloD0MIJR+7C1Qgc0CUhpRSlGgVS+JoFkdAu42dHWjGk3V9lChoBmgJaA9DCPBN02fHA3FAlIaUUpRoFUvIaBZHQLuNoj9GZu11fZQoaAZoCWgPQwjE7dCwGBx0QJSGlFKUaBVL7GgWR0C7jtBY/3WXdX2UKGgGaAloD0MItTf4wmQKckCUhpRSlGgVS79oFkdAu48KjGkvb3V9lChoBmgJaA9DCGxdaoT+cXJAlIaUUpRoFUvWaBZHQLuPHapgkTp1fZQoaAZoCWgPQwhYc4BgDs9xQJSGlFKUaBVLymgWR0C7jzfWlMyrdX2UKGgGaAloD0MIDAdCssDUckCUhpRSlGgVS8doFkdAu49FBUrCnHV9lChoBmgJaA9DCO54k9+iJzxAlIaUUpRoFUtiaBZHQLuPVJ/G2kV1fZQoaAZoCWgPQwgSiNf1i3RzQJSGlFKUaBVLwmgWR0C7j1Sq2jO+dX2UKGgGaAloD0MIXATG+obwbUCUhpRSlGgVS8loFkdAu49eOlwcYXV9lChoBmgJaA9DCNQoJJnVV25AlIaUUpRoFUvNaBZHQLuPZKkl/pd1fZQoaAZoCWgPQwjICKhwBD1wQJSGlFKUaBVL0GgWR0C7j2pJTVDsdX2UKGgGaAloD0MIUaG6ubhmcUCUhpRSlGgVTQABaBZHQLuPh/VRUFV1fZQoaAZoCWgPQwjGiEShJR1yQJSGlFKUaBVLyWgWR0C7j5DTWoWIdX2UKGgGaAloD0MIvxBy3v8ackCUhpRSlGgVTQEBaBZHQLuPktthuwZ1fZQoaAZoCWgPQwgS9YJP885xQJSGlFKUaBVL7WgWR0C7j65hvze5dX2UKGgGaAloD0MIz79d9qv5cECUhpRSlGgVS8poFkdAu4/FXKbKBHV9lChoBmgJaA9DCPH2IATk/XJAlIaUUpRoFU0GAWgWR0C7j8fqX4TLdX2UKGgGaAloD0MItaSjHIx8cECUhpRSlGgVS+5oFkdAu4/+BRQ793V9lChoBmgJaA9DCPs726M3x25AlIaUUpRoFUu2aBZHQLuP/9alk6N1fZQoaAZoCWgPQwif46PFGWJvQJSGlFKUaBVLw2gWR0C7kCIqbz9TdX2UKGgGaAloD0MIkWRW7zAoc0CUhpRSlGgVS7toFkdAu5AwpazNU3V9lChoBmgJaA9DCCJwJNCgR3FAlIaUUpRoFUvCaBZHQLuQVC0F8oh1fZQoaAZoCWgPQwiHUnsR7XNuQJSGlFKUaBVLuGgWR0C7kFcgdOqOdX2UKGgGaAloD0MIKej2kkZockCUhpRSlGgVS9loFkdAu5BzsZ5zHXV9lChoBmgJaA9DCJHT1/P1wXFAlIaUUpRoFUuwaBZHQLuQe6WPcSJ1fZQoaAZoCWgPQwhvZ195EO1xQJSGlFKUaBVLzmgWR0C7kHuhXbM5dX2UKGgGaAloD0MI0qbqHlkUckCUhpRSlGgVS/FoFkdAu5CFLnLaEnV9lChoBmgJaA9DCOhsAaH1aHFAlIaUUpRoFUveaBZHQLuQhHHmzSl1fZQoaAZoCWgPQwjaHVIMkBtxQJSGlFKUaBVLzWgWR0C7kJZ8fFJhdX2UKGgGaAloD0MIYtf2dkuVc0CUhpRSlGgVS89oFkdAu5CixnnMdXV9lChoBmgJaA9DCNrGn6isMXFAlIaUUpRoFUvMaBZHQLuQufAbhm51fZQoaAZoCWgPQwgt6L0xRFBwQJSGlFKUaBVLx2gWR0C7kQDYNAkcdX2UKGgGaAloD0MIxLRv7i+4c0CUhpRSlGgVS/JoFkdAu5EDjjrAxnV9lChoBmgJaA9DCO7tluSAwXFAlIaUUpRoFUvxaBZHQLuRBJr+Hah1fZQoaAZoCWgPQwhRTrSrkGJxQJSGlFKUaBVLyWgWR0C7kTLFn7HidX2UKGgGaAloD0MISPje36DUcUCUhpRSlGgVTQYBaBZHQLuRUb7j1f51fZQoaAZoCWgPQwgtexLYXGRxQJSGlFKUaBVLxGgWR0C7kVQ5FPSEdX2UKGgGaAloD0MIs+pztRWqb0CUhpRSlGgVS8toFkdAu5J8eNkvsnV9lChoBmgJaA9DCBhbCHIQWHBAlIaUUpRoFUvGaBZHQLuSm7zkIX11fZQoaAZoCWgPQwh5WRMLfLVvQJSGlFKUaBVL0WgWR0C7kqwpON5udX2UKGgGaAloD0MIMGXggNYHc0CUhpRSlGgVS8toFkdAu5KtJYkmhXV9lChoBmgJaA9DCCfeAZ60DnFAlIaUUpRoFUvNaBZHQLuSsLQXyiF1fZQoaAZoCWgPQwj7O9ujt5FxQJSGlFKUaBVLwWgWR0C7krR0EHMVdX2UKGgGaAloD0MIBwd7E8OccECUhpRSlGgVS95oFkdAu5K2ZhKDkHV9lChoBmgJaA9DCMto5PNKnHJAlIaUUpRoFUu7aBZHQLuS099c8kl1fZQoaAZoCWgPQwivIw7ZwA1uQJSGlFKUaBVL02gWR0C7ktiS/0uldX2UKGgGaAloD0MIcQD9vv/DcUCUhpRSlGgVS6FoFkdAu5L3CJoCdXV9lChoBmgJaA9DCFMDzeec6nJAlIaUUpRoFUvlaBZHQLuTUwmE5AB1fZQoaAZoCWgPQwjyfXGpiv5yQJSGlFKUaBVL6mgWR0C7k1bPQfITdX2UKGgGaAloD0MIBBvXv+uMckCUhpRSlGgVS9JoFkdAu5Nrq8lHBnV9lChoBmgJaA9DCFyrPeyFSXJAlIaUUpRoFUu4aBZHQLuTcM8YAKh1fZQoaAZoCWgPQwi+UMB2cMBwQJSGlFKUaBVLwWgWR0C7k3a5Gz8hdX2UKGgGaAloD0MI8zl3u15BcUCUhpRSlGgVS7poFkdAu5OT4+KTCHV9lChoBmgJaA9DCBqmttQB8HBAlIaUUpRoFUuxaBZHQLuTlt7KJVN1fZQoaAZoCWgPQwi8XS9N0Y9yQJSGlFKUaBVLtmgWR0C7k53lfZ27dX2UKGgGaAloD0MIxyx7ElgSdECUhpRSlGgVS+NoFkdAu5OiC6H0snV9lChoBmgJaA9DCCU/4lcsZnBAlIaUUpRoFUvAaBZHQLuTsWp6yB11fZQoaAZoCWgPQwj7WMFvw6BnQJSGlFKUaBVN4wFoFkdAu5O9xtHhCXV9lChoBmgJaA9DCOo/a378tG9AlIaUUpRoFUvLaBZHQLuTwPbwjMV1fZQoaAZoCWgPQwigxOdO8JBxQJSGlFKUaBVLt2gWR0C7k8Y1YQrddX2UKGgGaAloD0MIA83n3C2nckCUhpRSlGgVS/ZoFkdAu5PwctGutHV9lChoBmgJaA9DCD7shQL2AnNAlIaUUpRoFUvgaBZHQLuT/LTQVsV1fZQoaAZoCWgPQwi62or9JR1xQJSGlFKUaBVL12gWR0C7lBHk5p8GdX2UKGgGaAloD0MICvfKvNWTcUCUhpRSlGgVS79oFkdAu5RNF6RhdHV9lChoBmgJaA9DCEc4LXgRpXBAlIaUUpRoFUu+aBZHQLuUT1K5Cnh1fZQoaAZoCWgPQwiCqtGrASZxQJSGlFKUaBVLuWgWR0C7lGIuwosqdX2UKGgGaAloD0MIMNRhhZuIcUCUhpRSlGgVS9hoFkdAu5SHnJT2nXV9lChoBmgJaA9DCJwyN9+ILkpAlIaUUpRoFUusaBZHQLuUkmuDBdl1fZQoaAZoCWgPQwgcJa/OsZ9zQJSGlFKUaBVLwWgWR0C7lJ5VXFLndX2UKGgGaAloD0MIYRiw5Krtc0CUhpRSlGgVS+doFkdAu5SoM+eOGXV9lChoBmgJaA9DCEJ8YMe/y3JAlIaUUpRoFUvWaBZHQLuUrdbPhQ51fZQoaAZoCWgPQwinH9RFyvdxQJSGlFKUaBVLuGgWR0C7lLlGCqZMdX2UKGgGaAloD0MIOSnMe1wAc0CUhpRSlGgVS9poFkdAu5S8RAbADnV9lChoBmgJaA9DCBPSGoOOx3FAlIaUUpRoFUvEaBZHQLuUw5bhWHV1fZQoaAZoCWgPQwjsouiBD1pzQJSGlFKUaBVL02gWR0C7lNIxxkupdX2UKGgGaAloD0MIkX77OjAmc0CUhpRSlGgVS/RoFkdAu5TVFSbYsnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 496, "n_steps": 1024, "gamma": 0.9995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3c12c2d6ea58d5afe568786f16876a1bc0c0b0f36708eb1692318c6f87b1ebc3
3
- size 145119
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a8cbf164852d78e99ef4d0b57235c8c3fc40fd08aa2daef3adb828bda652672
3
+ size 145169
ppo-LunarLander-v2/data CHANGED
@@ -4,19 +4,19 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6b1bdfb440>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6b1bdfb4d0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6b1bdfb560>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6b1bdfb5f0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f6b1bdfb680>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f6b1bdfb710>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6b1bdfb7a0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7f6b1bdfb830>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6b1bdfb8c0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6b1bdfb950>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6b1bdfb9e0>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7f6b1be4d390>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
@@ -42,24 +42,24 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 1015808,
46
- "_total_timesteps": 1000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1652298474.9657133,
51
  "learning_rate": {
52
  ":type:": "<class 'function'>",
53
- ":serialized:": "gAWV5gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyMCiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMC4KCiAgICAgICAgOnBhcmFtIHByb2dyZXNzX3JlbWFpbmluZzoKICAgICAgICA6cmV0dXJuOiBjdXJyZW50IGxlYXJuaW5nIHJhdGUKICAgICAgICCUhZQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMHzxpcHl0aG9uLWlucHV0LTIxLTQ3Mzg0ODBlMDkxYj6UjARmdW5jlEsQQwIAB5SMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoF2gPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoDIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgqdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAqMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
54
  },
55
  "tensorboard_log": null,
56
  "lr_schedule": {
57
  ":type:": "<class 'function'>",
58
- ":serialized:": "gAWV5gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyMCiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMC4KCiAgICAgICAgOnBhcmFtIHByb2dyZXNzX3JlbWFpbmluZzoKICAgICAgICA6cmV0dXJuOiBjdXJyZW50IGxlYXJuaW5nIHJhdGUKICAgICAgICCUhZQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMHzxpcHl0aG9uLWlucHV0LTIxLTQ3Mzg0ODBlMDkxYj6UjARmdW5jlEsQQwIAB5SMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoF2gPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoDIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgqdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAqMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
59
  },
60
  "_last_obs": {
61
  ":type:": "<class 'numpy.ndarray'>",
62
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHq2HL6taqw/8JTtvnX//77ECVK+XJIivgAAAAAAAAAAul4wvi0lQT5aQMk+DCuYvip8iLr+kjA+AAAAAAAAAACzjZC9zyhNvDJGbr1hA+m6Zw60PehRvjsAAIA/AACAPwDKjz0doqU+84cNvak/477xH/Y7O6zfOwAAAAAAAAAAmv38PI9uTbr4tZc7qxwFOSUGwTruXze6AACAPwAAgD9a4YU9D5YnvO0kfL7xOGo95YeUPeCFirsAAIA/AAAAAO5/hL4si/s+4H7CvPzMD7/3QZ++fX7VPQAAAAAAAAAAQMGyPT8KXj91RE49J0kfv/jvxT0etYk9AAAAAAAAAAAzufo9WuCYP8tBvD5CTyu/NctMPkoIOz4AAAAAAAAAABrqVD2L8wg/UQ+4PIvwHb83N5c9cgdIvQAAAAAAAAAA1pSgPqwJ4z4JaAS+aRL2vr6glj6OS869AAAAAAAAAABjlYo+OyWGP0uZzj6/Fy+/iYq/PiUNJD4AAAAAAAAAAJrAS71WQds+pfO6PUYa3r4j3fy8B3y8PAAAAAAAAAAAmuM9vI/CcbhdBmiz+t/xriPULbt72cMzAACAPwAAgD9m6HW9w0Fsulow27ydr4Ix9kR4OqpK77MAAIA/AACAP6CUib5KFAo/NU5uvdZBEr+NT6G+Uly6PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
63
  },
64
  "_last_episode_starts": {
65
  ":type:": "<class 'numpy.ndarray'>",
@@ -69,10 +69,10 @@
69
  "_episode_num": 0,
70
  "use_sde": false,
71
  "sde_sample_freq": -1,
72
- "_current_progress_remaining": -0.015808000000000044,
73
  "ep_info_buffer": {
74
  ":type:": "<class 'collections.deque'>",
75
- ":serialized:": "gAWVJxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8X7cfnlqcECUhpRSlIwBbJRL8YwBdJRHQJ0M27nPmgd1fZQoaAZoCWgPQwijztxDwntzQJSGlFKUaBVL42gWR0CdDVGVRk3CdX2UKGgGaAloD0MInzpWKf13cECUhpRSlGgVS81oFkdAnQ2JOBUaQ3V9lChoBmgJaA9DCPiL2ZJVHHFAlIaUUpRoFUvOaBZHQJ0Nzj81n/V1fZQoaAZoCWgPQwhUw35PrBVxQJSGlFKUaBVLumgWR0CdDjSHM2WIdX2UKGgGaAloD0MIFR40uy7JcECUhpRSlGgVS9RoFkdAnQ5FSCOFQHV9lChoBmgJaA9DCDoi36WUhHFAlIaUUpRoFU0uAWgWR0CdDpb9qDbrdX2UKGgGaAloD0MIgPJ37yh3cUCUhpRSlGgVS8RoFkdAnQ6wNkOI7HV9lChoBmgJaA9DCEWDFDxF/XBAlIaUUpRoFUvJaBZHQJ0PFbA1vVF1fZQoaAZoCWgPQwjjqUcaHF5yQJSGlFKUaBVLvGgWR0CdDz0u14PgdX2UKGgGaAloD0MIjWFO0Cbtc0CUhpRSlGgVTRQBaBZHQJ0PQbtJFsp1fZQoaAZoCWgPQwigwhGkEntyQJSGlFKUaBVLxGgWR0CdD5At4A0bdX2UKGgGaAloD0MIAaYMHJBycECUhpRSlGgVS6toFkdAnQ+QbADaG3V9lChoBmgJaA9DCK946pHGM3FAlIaUUpRoFUvQaBZHQJ0Pqee4Cp51fZQoaAZoCWgPQwgZVvFGJuBxQJSGlFKUaBVNBAFoFkdAnRAwQQL/j3V9lChoBmgJaA9DCO888ZytuG9AlIaUUpRoFUuraBZHQJ0QOzeGfwt1fZQoaAZoCWgPQwgxPzc0JV5xQJSGlFKUaBVL3WgWR0CdEPrpqynldX2UKGgGaAloD0MIyCWOPBBXS0CUhpRSlGgVS5NoFkdAnRET0xubZ3V9lChoBmgJaA9DCOKrHcV51XFAlIaUUpRoFUvEaBZHQJ0RoF4cFQl1fZQoaAZoCWgPQwhTsTGvo6NxQJSGlFKUaBVL3mgWR0CdEeonKGL2dX2UKGgGaAloD0MI41XWNkVwcUCUhpRSlGgVS7poFkdAnRJXMEA5rHV9lChoBmgJaA9DCBd/2xOkOXFAlIaUUpRoFUvUaBZHQJ0SYDB/I811fZQoaAZoCWgPQwg98gcDT5ZyQJSGlFKUaBVNFwFoFkdAnRLujZcs2HV9lChoBmgJaA9DCG6+Ed2zVXBAlIaUUpRoFUuuaBZHQJ0TEwmE5AB1fZQoaAZoCWgPQwhpyHiUCptxQJSGlFKUaBVLzGgWR0CdEyvLX+VDdX2UKGgGaAloD0MIGHrE6LlucECUhpRSlGgVS79oFkdAnRNudPLxJHV9lChoBmgJaA9DCCL99nXg5W9AlIaUUpRoFUu/aBZHQJ1bRPuXu3N1fZQoaAZoCWgPQwgdO6jEtbVwQJSGlFKUaBVNGAFoFkdAnVvwvL5h0HV9lChoBmgJaA9DCMDtCRIbPXJAlIaUUpRoFUv5aBZHQJ1cAgaFVT91fZQoaAZoCWgPQwjpKt1dZ7dzQJSGlFKUaBVNAQFoFkdAnVwuZ9d/rnV9lChoBmgJaA9DCGYwRiQKoXFAlIaUUpRoFUvyaBZHQJ1c54Oc2BJ1fZQoaAZoCWgPQwi37XvUnxVxQJSGlFKUaBVLzWgWR0CdXPwco6S1dX2UKGgGaAloD0MI0SAFTyG8cECUhpRSlGgVTQ8BaBZHQJ1dmJfpljF1fZQoaAZoCWgPQwgfgxWn2k9wQJSGlFKUaBVLzGgWR0CdXfilSCOFdX2UKGgGaAloD0MIwOjy5jDpcUCUhpRSlGgVS/hoFkdAnV4P779AHHV9lChoBmgJaA9DCD55WKi1inBAlIaUUpRoFUu9aBZHQJ1eI0k4WDZ1fZQoaAZoCWgPQwivX7AbdlRxQJSGlFKUaBVL5WgWR0CdXkCyhSLqdX2UKGgGaAloD0MIwqVjznN+cUCUhpRSlGgVS8loFkdAnV81gx8D0XV9lChoBmgJaA9DCLcKYqArL3FAlIaUUpRoFUvwaBZHQJ1fNgH/tIF1fZQoaAZoCWgPQwgwR4/f22xwQJSGlFKUaBVLxmgWR0CdX4SCOFQEdX2UKGgGaAloD0MIwylz843hcECUhpRSlGgVS+VoFkdAnV+Oo99tuXV9lChoBmgJaA9DCEeTizHwcXBAlIaUUpRoFUvnaBZHQJ1fuhN/OMV1fZQoaAZoCWgPQwi8yW/RiZlzQJSGlFKUaBVL9GgWR0CdYEwSJ0nxdX2UKGgGaAloD0MIVkRN9Hm6bkCUhpRSlGgVS79oFkdAnWD5NoJzDHV9lChoBmgJaA9DCBYwgVv3rnNAlIaUUpRoFUvsaBZHQJ1g/e9Ba9t1fZQoaAZoCWgPQwhYqDXNu81yQJSGlFKUaBVL6GgWR0CdYRcY64lQdX2UKGgGaAloD0MITyDsFOvSckCUhpRSlGgVS/5oFkdAnWFH5rP+oHV9lChoBmgJaA9DCF3g8lhzvnFAlIaUUpRoFUubaBZHQJ1hVf9gndB1fZQoaAZoCWgPQwhYchWL34ByQJSGlFKUaBVL1WgWR0CdYXb70nPWdX2UKGgGaAloD0MIc9cS8kEXP0CUhpRSlGgVS3poFkdAnWHtDlYEGXV9lChoBmgJaA9DCOoj8IdfEXFAlIaUUpRoFUvSaBZHQJ1h6qtHQQd1fZQoaAZoCWgPQwiSdqOP+RBxQJSGlFKUaBVLxmgWR0CdYgB3zMA4dX2UKGgGaAloD0MI/BwfLY7vcUCUhpRSlGgVS9BoFkdAnWJwj6eoUHV9lChoBmgJaA9DCGqlEMilqXJAlIaUUpRoFUvqaBZHQJ1ixfeDWbx1fZQoaAZoCWgPQwgvxOqPcN9wQJSGlFKUaBVLv2gWR0CdYvHR1HOKdX2UKGgGaAloD0MIVz82yY+Nc0CUhpRSlGgVS+doFkdAnWO66reZX3V9lChoBmgJaA9DCJ5i1SAMUHJAlIaUUpRoFUvlaBZHQJ1j/fZVXFN1fZQoaAZoCWgPQwiL+iR3WBJzQJSGlFKUaBVL6mgWR0CdZFBaLXMAdX2UKGgGaAloD0MIFqOutXebcUCUhpRSlGgVS9NoFkdAnWR056t1ZHV9lChoBmgJaA9DCDm1M0ytiXNAlIaUUpRoFUvKaBZHQJ1k8Ajps411fZQoaAZoCWgPQwjZI9QMadZwQJSGlFKUaBVL0GgWR0CdZQ0h/y5JdX2UKGgGaAloD0MIT7FqECYvckCUhpRSlGgVS8VoFkdAnWUi6Ymb9nV9lChoBmgJaA9DCKFI93MKpnFAlIaUUpRoFUvWaBZHQJ1lRe5WilB1fZQoaAZoCWgPQwg5K6ImOrtwQJSGlFKUaBVLs2gWR0CdZYx0uDjBdX2UKGgGaAloD0MIlUkNbYDeckCUhpRSlGgVS95oFkdAnWXOMhouf3V9lChoBmgJaA9DCD48S5BRI3NAlIaUUpRoFUvmaBZHQJ1l0xvegth1fZQoaAZoCWgPQwjfxftx+wlwQJSGlFKUaBVLs2gWR0CdZfTtb9qDdX2UKGgGaAloD0MISl0yjpHOTUCUhpRSlGgVS35oFkdAnWaJdWyTp3V9lChoBmgJaA9DCKgeaXDb8HJAlIaUUpRoFUvoaBZHQJ1mi8J2MbZ1fZQoaAZoCWgPQwhbttYXCe9tQJSGlFKUaBVLwGgWR0CdZs1UEPlNdX2UKGgGaAloD0MIMGXggJYickCUhpRSlGgVS+NoFkdAnWdPx6OYIHV9lChoBmgJaA9DCPzIrUm3QHJAlIaUUpRoFUvAaBZHQJ1nmxzJZGN1fZQoaAZoCWgPQwjLn28LFv9uQJSGlFKUaBVLu2gWR0CdaBP9DQZ5dX2UKGgGaAloD0MIsRafAmALckCUhpRSlGgVS+ZoFkdAnWkq8UVSGnV9lChoBmgJaA9DCNdnzvoUnXJAlIaUUpRoFUvMaBZHQJ1pPL1VYIV1fZQoaAZoCWgPQwieJF0zOUtyQJSGlFKUaBVL02gWR0CdaUdmg8KYdX2UKGgGaAloD0MIvDsyVtt/ckCUhpRSlGgVS9RoFkdAnWmtQCSzPnV9lChoBmgJaA9DCIZzDTP0n3FAlIaUUpRoFUviaBZHQJ1p1XnyNGV1fZQoaAZoCWgPQwiRmKCGr+tzQJSGlFKUaBVLw2gWR0CdafCvX9R8dX2UKGgGaAloD0MIlPqytNOKcECUhpRSlGgVS85oFkdAnWometjkMnV9lChoBmgJaA9DCFUxlX5CinNAlIaUUpRoFUvYaBZHQJ1qi5hBqsV1fZQoaAZoCWgPQwjq6o7FdiFxQJSGlFKUaBVL3WgWR0Cda0SGahHtdX2UKGgGaAloD0MITpmbb8TfcUCUhpRSlGgVS9FoFkdAnWtOVopQUHV9lChoBmgJaA9DCL7cJ0dBmXFAlIaUUpRoFUvSaBZHQJ1r6zw+dLB1fZQoaAZoCWgPQwh0forjQOlxQJSGlFKUaBVLtWgWR0CdbB6Tnq3WdX2UKGgGaAloD0MIpyOAm4WHcUCUhpRSlGgVS85oFkdAnWwrdFfAsXV9lChoBmgJaA9DCOT1YFJ8VnBAlIaUUpRoFU1AAWgWR0CdbG8kleF+dX2UKGgGaAloD0MIq7TFNb7lcECUhpRSlGgVS8poFkdAnW3MPatcOnV9lChoBmgJaA9DCJ+RCI0gYXFAlIaUUpRoFUvfaBZHQJ1uMm5UcXF1fZQoaAZoCWgPQwg6lQwAFb5wQJSGlFKUaBVL42gWR0CdbmNbTtsvdX2UKGgGaAloD0MImpfD7nuYc0CUhpRSlGgVTU8CaBZHQJ1udp8F6iV1fZQoaAZoCWgPQwh0DMheL01xQJSGlFKUaBVLzWgWR0Cdbpkv9LpSdX2UKGgGaAloD0MIYCFzZRBBc0CUhpRSlGgVS9poFkdAnW8XBHkLhXV9lChoBmgJaA9DCLdDw2KUSHNAlIaUUpRoFUvuaBZHQJ1vMvugHu91fZQoaAZoCWgPQwhHPNnNDMtxQJSGlFKUaBVLsGgWR0Cdb0mmtQsPdX2UKGgGaAloD0MI2PSgoJRPcECUhpRSlGgVS/toFkdAnW9UJv5xi3V9lChoBmgJaA9DCIj1Rq0wGXJAlIaUUpRoFUvWaBZHQJ1vYpe/pMZ1fZQoaAZoCWgPQwhKJxJM9QpxQJSGlFKUaBVLxWgWR0Cdb6OyVv/BdX2UKGgGaAloD0MIPStpxXefc0CUhpRSlGgVTbUBaBZHQJ1v/V9Wp611fZQoaAZoCWgPQwh73LdaJ/VvQJSGlFKUaBVLu2gWR0Cdb/rGipNsdWUu"
76
  },
77
  "ep_success_buffer": {
78
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa2d6e1c290>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa2d6e1c320>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa2d6e1c3b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa2d6e1c440>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa2d6e1c4d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa2d6e1c560>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa2d6e1c5f0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa2d6e1c680>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa2d6e1c710>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa2d6e1c7a0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa2d6e1c830>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fa2d6e5cd20>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 1016000,
46
+ "_total_timesteps": 1200000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1652303410.1914387,
51
  "learning_rate": {
52
  ":type:": "<class 'function'>",
53
+ ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyMCiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMC4KCiAgICAgICAgOnBhcmFtIHByb2dyZXNzX3JlbWFpbmluZzoKICAgICAgICA6cmV0dXJuOiBjdXJyZW50IGxlYXJuaW5nIHJhdGUKICAgICAgICCUhZQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMHzxpcHl0aG9uLWlucHV0LTM4LWQ5MTM2ZjY2YjMxZT6UjARmdW5jlEsQQwIAB5SMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoF2gPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoK3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
54
  },
55
  "tensorboard_log": null,
56
  "lr_schedule": {
57
  ":type:": "<class 'function'>",
58
+ ":serialized:": "gAWV+QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCSxNDCHwAiAAUAFMAlIyMCiAgICAgICAgUHJvZ3Jlc3Mgd2lsbCBkZWNyZWFzZSBmcm9tIDEgKGJlZ2lubmluZykgdG8gMC4KCiAgICAgICAgOnBhcmFtIHByb2dyZXNzX3JlbWFpbmluZzoKICAgICAgICA6cmV0dXJuOiBjdXJyZW50IGxlYXJuaW5nIHJhdGUKICAgICAgICCUhZQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMHzxpcHl0aG9uLWlucHV0LTM4LWQ5MTM2ZjY2YjMxZT6UjARmdW5jlEsQQwIAB5SMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoF2gPjAxfX3F1YWxuYW1lX1+UjB1saW5lYXJfc2NoZWR1bGUuPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lCiMEnByb2dyZXNzX3JlbWFpbmluZ5SMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoK3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flGgKjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
59
  },
60
  "_last_obs": {
61
  ":type:": "<class 'numpy.ndarray'>",
62
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOZNPD32bEK6ScyAN5GApzLjM6850VaXtgAAgD8AAIA/GqyMvcdHRj9TpfS9K8MUv0y4C75g8U69AAAAAAAAAADNxXg9qELjPpImn70U4Q+/IiruPG+zFb0AAAAAAAAAAE0pJ71rGZk+o1uLvBQEyr7DiyK9/OuFuwAAAAAAAAAAMxMtPYnxMD0ogVO+khaSvqHZDL6QbuC8AAAAAAAAAACAByC+blGqP84Yub6SXSe/Bj91vrC8dr0AAAAAAAAAALM0T73zSfU+ngNJPI+eC785tSW9s4HovAAAAAAAAAAA5mifvRRw67oRCYC9NB2UPKQzBzxrKoC9AACAPwAAgD/mWgC9DBITP6PIJD10DQy/w6jfvMDkADwAAAAAAAAAAKoxZ77V0gA/DJbAPMBTBb+qMXC+ZCS9PQAAAAAAAAAAc7j0PQfFgj+DGMs9rpQ0vztIRz7FxCU9AAAAAAAAAABNJLe95KGEPW34bj5E+3m+bs0GPkalXT0AAAAAAAAAAAAk3j2KSkg86qWPvjXHbL5eduy9meujvQAAAAAAAAAA7T1rPmcsMj+zLN880GgVv9eknD6adH29AAAAAAAAAABmEEU8KIvSPtSmGrxfCsu+iYWuPC5fMj0AAAAAAAAAADO78TyPXk66r1uDu6M9gDIgCm86KgUHtAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
63
  },
64
  "_last_episode_starts": {
65
  ":type:": "<class 'numpy.ndarray'>",
 
69
  "_episode_num": 0,
70
  "use_sde": false,
71
  "sde_sample_freq": -1,
72
+ "_current_progress_remaining": 0.15349333333333337,
73
  "ep_info_buffer": {
74
  ":type:": "<class 'collections.deque'>",
75
+ ":serialized:": "gAWVIhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIqRWm73XscECUhpRSlIwBbJRLzYwBdJRHQLt6E1e0G/x1fZQoaAZoCWgPQwg0aOifYBh0QJSGlFKUaBVL4mgWR0C7ehIQWepXdX2UKGgGaAloD0MIXmiu04iacUCUhpRSlGgVS69oFkdAu3oeVcD8tXV9lChoBmgJaA9DCE1lUdjFvXFAlIaUUpRoFUvVaBZHQLt6IPbO/tZ1fZQoaAZoCWgPQwivCP63EqxvQJSGlFKUaBVLxmgWR0C7eiNfb9IgdX2UKGgGaAloD0MI5Q0w852tb0CUhpRSlGgVS85oFkdAu3opWDHwPXV9lChoBmgJaA9DCNYZ3xdXDHJAlIaUUpRoFUvUaBZHQLt6REwFkhB1fZQoaAZoCWgPQwhh304iglBzQJSGlFKUaBVL6GgWR0C7el/Z/Tb4dX2UKGgGaAloD0MI7WKa6Z7gcUCUhpRSlGgVS9doFkdAu3pnBRAKOXV9lChoBmgJaA9DCP1pozpdJXJAlIaUUpRoFUvjaBZHQLt6hN4qwyJ1fZQoaAZoCWgPQwhtjnObcOhyQJSGlFKUaBVL0GgWR0C7etGL5ylvdX2UKGgGaAloD0MI/+bFiW//cECUhpRSlGgVS75oFkdAu3reL0jC53V9lChoBmgJaA9DCDOpoQ0AY3JAlIaUUpRoFUveaBZHQLt6+7aZhKF1fZQoaAZoCWgPQwgr3PKRlMVyQJSGlFKUaBVLuGgWR0C7ewS4rjHXdX2UKGgGaAloD0MIQBL27WRLcUCUhpRSlGgVS+doFkdAu3sNpvgm7nV9lChoBmgJaA9DCDFfXoD953FAlIaUUpRoFUvBaBZHQLt7EE6kqMF1fZQoaAZoCWgPQwiwHCED+RByQJSGlFKUaBVLw2gWR0C7eyRdhRZVdX2UKGgGaAloD0MI9gt2w7bYcECUhpRSlGgVS75oFkdAu3skfDDTB3V9lChoBmgJaA9DCATltn2PlHFAlIaUUpRoFUvgaBZHQLt7Jh+OOsF1fZQoaAZoCWgPQwjSAUnYN8twQJSGlFKUaBVLx2gWR0C7eyf9P1tgdX2UKGgGaAloD0MIA5gycMCeb0CUhpRSlGgVS/poFkdAu3tBFI/Z/XV9lChoBmgJaA9DCJcbDHXYPG5AlIaUUpRoFUvjaBZHQLt7SWH1vl51fZQoaAZoCWgPQwhp/pjW5stxQJSGlFKUaBVLz2gWR0C7e1ZSeiBYdX2UKGgGaAloD0MIJR+7C1Qgc0CUhpRSlGgVS+JoFkdAu42dHWjGk3V9lChoBmgJaA9DCPBN02fHA3FAlIaUUpRoFUvIaBZHQLuNoj9GZu11fZQoaAZoCWgPQwjE7dCwGBx0QJSGlFKUaBVL7GgWR0C7jtBY/3WXdX2UKGgGaAloD0MItTf4wmQKckCUhpRSlGgVS79oFkdAu48KjGkvb3V9lChoBmgJaA9DCGxdaoT+cXJAlIaUUpRoFUvWaBZHQLuPHapgkTp1fZQoaAZoCWgPQwhYc4BgDs9xQJSGlFKUaBVLymgWR0C7jzfWlMyrdX2UKGgGaAloD0MIDAdCssDUckCUhpRSlGgVS8doFkdAu49FBUrCnHV9lChoBmgJaA9DCO54k9+iJzxAlIaUUpRoFUtiaBZHQLuPVJ/G2kV1fZQoaAZoCWgPQwgSiNf1i3RzQJSGlFKUaBVLwmgWR0C7j1Sq2jO+dX2UKGgGaAloD0MIXATG+obwbUCUhpRSlGgVS8loFkdAu49eOlwcYXV9lChoBmgJaA9DCNQoJJnVV25AlIaUUpRoFUvNaBZHQLuPZKkl/pd1fZQoaAZoCWgPQwjICKhwBD1wQJSGlFKUaBVL0GgWR0C7j2pJTVDsdX2UKGgGaAloD0MIUaG6ubhmcUCUhpRSlGgVTQABaBZHQLuPh/VRUFV1fZQoaAZoCWgPQwjGiEShJR1yQJSGlFKUaBVLyWgWR0C7j5DTWoWIdX2UKGgGaAloD0MIvxBy3v8ackCUhpRSlGgVTQEBaBZHQLuPktthuwZ1fZQoaAZoCWgPQwgS9YJP885xQJSGlFKUaBVL7WgWR0C7j65hvze5dX2UKGgGaAloD0MIz79d9qv5cECUhpRSlGgVS8poFkdAu4/FXKbKBHV9lChoBmgJaA9DCPH2IATk/XJAlIaUUpRoFU0GAWgWR0C7j8fqX4TLdX2UKGgGaAloD0MItaSjHIx8cECUhpRSlGgVS+5oFkdAu4/+BRQ793V9lChoBmgJaA9DCPs726M3x25AlIaUUpRoFUu2aBZHQLuP/9alk6N1fZQoaAZoCWgPQwif46PFGWJvQJSGlFKUaBVLw2gWR0C7kCIqbz9TdX2UKGgGaAloD0MIkWRW7zAoc0CUhpRSlGgVS7toFkdAu5AwpazNU3V9lChoBmgJaA9DCCJwJNCgR3FAlIaUUpRoFUvCaBZHQLuQVC0F8oh1fZQoaAZoCWgPQwiHUnsR7XNuQJSGlFKUaBVLuGgWR0C7kFcgdOqOdX2UKGgGaAloD0MIKej2kkZockCUhpRSlGgVS9loFkdAu5BzsZ5zHXV9lChoBmgJaA9DCJHT1/P1wXFAlIaUUpRoFUuwaBZHQLuQe6WPcSJ1fZQoaAZoCWgPQwhvZ195EO1xQJSGlFKUaBVLzmgWR0C7kHuhXbM5dX2UKGgGaAloD0MI0qbqHlkUckCUhpRSlGgVS/FoFkdAu5CFLnLaEnV9lChoBmgJaA9DCOhsAaH1aHFAlIaUUpRoFUveaBZHQLuQhHHmzSl1fZQoaAZoCWgPQwjaHVIMkBtxQJSGlFKUaBVLzWgWR0C7kJZ8fFJhdX2UKGgGaAloD0MIYtf2dkuVc0CUhpRSlGgVS89oFkdAu5CixnnMdXV9lChoBmgJaA9DCNrGn6isMXFAlIaUUpRoFUvMaBZHQLuQufAbhm51fZQoaAZoCWgPQwgt6L0xRFBwQJSGlFKUaBVLx2gWR0C7kQDYNAkcdX2UKGgGaAloD0MIxLRv7i+4c0CUhpRSlGgVS/JoFkdAu5EDjjrAxnV9lChoBmgJaA9DCO7tluSAwXFAlIaUUpRoFUvxaBZHQLuRBJr+Hah1fZQoaAZoCWgPQwhRTrSrkGJxQJSGlFKUaBVLyWgWR0C7kTLFn7HidX2UKGgGaAloD0MISPje36DUcUCUhpRSlGgVTQYBaBZHQLuRUb7j1f51fZQoaAZoCWgPQwgtexLYXGRxQJSGlFKUaBVLxGgWR0C7kVQ5FPSEdX2UKGgGaAloD0MIs+pztRWqb0CUhpRSlGgVS8toFkdAu5J8eNkvsnV9lChoBmgJaA9DCBhbCHIQWHBAlIaUUpRoFUvGaBZHQLuSm7zkIX11fZQoaAZoCWgPQwh5WRMLfLVvQJSGlFKUaBVL0WgWR0C7kqwpON5udX2UKGgGaAloD0MIMGXggNYHc0CUhpRSlGgVS8toFkdAu5KtJYkmhXV9lChoBmgJaA9DCCfeAZ60DnFAlIaUUpRoFUvNaBZHQLuSsLQXyiF1fZQoaAZoCWgPQwj7O9ujt5FxQJSGlFKUaBVLwWgWR0C7krR0EHMVdX2UKGgGaAloD0MIBwd7E8OccECUhpRSlGgVS95oFkdAu5K2ZhKDkHV9lChoBmgJaA9DCMto5PNKnHJAlIaUUpRoFUu7aBZHQLuS099c8kl1fZQoaAZoCWgPQwivIw7ZwA1uQJSGlFKUaBVL02gWR0C7ktiS/0uldX2UKGgGaAloD0MIcQD9vv/DcUCUhpRSlGgVS6FoFkdAu5L3CJoCdXV9lChoBmgJaA9DCFMDzeec6nJAlIaUUpRoFUvlaBZHQLuTUwmE5AB1fZQoaAZoCWgPQwjyfXGpiv5yQJSGlFKUaBVL6mgWR0C7k1bPQfITdX2UKGgGaAloD0MIBBvXv+uMckCUhpRSlGgVS9JoFkdAu5Nrq8lHBnV9lChoBmgJaA9DCFyrPeyFSXJAlIaUUpRoFUu4aBZHQLuTcM8YAKh1fZQoaAZoCWgPQwi+UMB2cMBwQJSGlFKUaBVLwWgWR0C7k3a5Gz8hdX2UKGgGaAloD0MI8zl3u15BcUCUhpRSlGgVS7poFkdAu5OT4+KTCHV9lChoBmgJaA9DCBqmttQB8HBAlIaUUpRoFUuxaBZHQLuTlt7KJVN1fZQoaAZoCWgPQwi8XS9N0Y9yQJSGlFKUaBVLtmgWR0C7k53lfZ27dX2UKGgGaAloD0MIxyx7ElgSdECUhpRSlGgVS+NoFkdAu5OiC6H0snV9lChoBmgJaA9DCCU/4lcsZnBAlIaUUpRoFUvAaBZHQLuTsWp6yB11fZQoaAZoCWgPQwj7WMFvw6BnQJSGlFKUaBVN4wFoFkdAu5O9xtHhCXV9lChoBmgJaA9DCOo/a378tG9AlIaUUpRoFUvLaBZHQLuTwPbwjMV1fZQoaAZoCWgPQwigxOdO8JBxQJSGlFKUaBVLt2gWR0C7k8Y1YQrddX2UKGgGaAloD0MIA83n3C2nckCUhpRSlGgVS/ZoFkdAu5PwctGutHV9lChoBmgJaA9DCD7shQL2AnNAlIaUUpRoFUvgaBZHQLuT/LTQVsV1fZQoaAZoCWgPQwi62or9JR1xQJSGlFKUaBVL12gWR0C7lBHk5p8GdX2UKGgGaAloD0MICvfKvNWTcUCUhpRSlGgVS79oFkdAu5RNF6RhdHV9lChoBmgJaA9DCEc4LXgRpXBAlIaUUpRoFUu+aBZHQLuUT1K5Cnh1fZQoaAZoCWgPQwiCqtGrASZxQJSGlFKUaBVLuWgWR0C7lGIuwosqdX2UKGgGaAloD0MIMNRhhZuIcUCUhpRSlGgVS9hoFkdAu5SHnJT2nXV9lChoBmgJaA9DCJwyN9+ILkpAlIaUUpRoFUusaBZHQLuUkmuDBdl1fZQoaAZoCWgPQwgcJa/OsZ9zQJSGlFKUaBVLwWgWR0C7lJ5VXFLndX2UKGgGaAloD0MIYRiw5Krtc0CUhpRSlGgVS+doFkdAu5SoM+eOGXV9lChoBmgJaA9DCEJ8YMe/y3JAlIaUUpRoFUvWaBZHQLuUrdbPhQ51fZQoaAZoCWgPQwinH9RFyvdxQJSGlFKUaBVLuGgWR0C7lLlGCqZMdX2UKGgGaAloD0MIOSnMe1wAc0CUhpRSlGgVS9poFkdAu5S8RAbADnV9lChoBmgJaA9DCBPSGoOOx3FAlIaUUpRoFUvEaBZHQLuUw5bhWHV1fZQoaAZoCWgPQwjsouiBD1pzQJSGlFKUaBVL02gWR0C7lNIxxkupdX2UKGgGaAloD0MIkX77OjAmc0CUhpRSlGgVS/RoFkdAu5TVFSbYsnVlLg=="
76
  },
77
  "ep_success_buffer": {
78
  ":type:": "<class 'collections.deque'>",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:83473d08d359df924d5cfebffee9be87533c23841537231c34eb908089719f4b
3
  size 84893
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a2a3efc8b03fd08c03018d0c7d22447d565b9a11885f412272da43989f6badd
3
  size 84893
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6b5ea86a47d86390f2b98925c75ad64a8790f335a119237b73a54880a7478f8f
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efae7b24cb8333da44c9813725f3c95bd8dceec547100cdefa99c7b5ea2b22df
3
  size 43201
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:feda9c060e80f05f041994559ea4cadfa1d03050c9bf1ca1af56e3555c45d116
3
- size 206441
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eab722a7c70e3e9dabf3ce45d3d3e71cde2b7f74b77eaa2843072358860f9394
3
+ size 208705
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 275.789675614816, "std_reward": 25.843245662802847, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T20:36:48.801778"}
 
1
+ {"mean_reward": 281.8537377495867, "std_reward": 13.71197126693284, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T21:53:24.871642"}