sagorsarker
commited on
Commit
•
5b94ed4
1
Parent(s):
91f838a
Update README.md
Browse files
README.md
CHANGED
@@ -10,6 +10,8 @@ tags:
|
|
10 |
license: gemma
|
11 |
library_name: transformers
|
12 |
pipeline_tag: text-generation
|
|
|
|
|
13 |
---
|
14 |
|
15 |
## Model Information
|
@@ -109,6 +111,15 @@ We evaluated the models on the following datasets:
|
|
109 |
|
110 |
|
111 |
#### Evaluation on English Benchmark datasets
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
### Instruction Tuned Models
|
114 |
|
@@ -116,5 +127,4 @@ We evaluated the models on the following datasets:
|
|
116 |
### Intended Use
|
117 |
- Bangla text generation
|
118 |
- Bangla language understanding tasks
|
119 |
-
- Bangla instruction fine-tuning tasks
|
120 |
-
|
|
|
10 |
license: gemma
|
11 |
library_name: transformers
|
12 |
pipeline_tag: text-generation
|
13 |
+
base_model:
|
14 |
+
- google/gemma-2-2b
|
15 |
---
|
16 |
|
17 |
## Model Information
|
|
|
111 |
|
112 |
|
113 |
#### Evaluation on English Benchmark datasets
|
114 |
+
- **gemma-2-2b** outperforms **titulm-gemma-2-2b-v1.0** across all tasks in both 0-shot and 5-shot settings, achieving the highest scores in **MMLU**, **BoolQ**, **Commonsense QA**, **OpenBook QA**, and **PIQA**, with a peak 5-shot score of **0.80** in **PIQA**.
|
115 |
+
- **titulm-gemma-2-2b-v1.0** shows competitive performance but lags behind **gemma-2-2b**, particularly in **Commonsense QA** and **BoolQ**, with the highest score being **0.77** in **PIQA**.
|
116 |
+
|
117 |
+
| Model | Shots | MMLU | BoolQ | Commonsense QA | OpenBook QA | PIQA |
|
118 |
+
|--------------------------------------|--------|--------------|------------|--------------------|-----------------|-----------|
|
119 |
+
| gemma-2-2b | 0-shot | **0.50** | **0.74** | **0.52** | **0.42** | **0.79** |
|
120 |
+
| | 5-shot | **0.53** | **0.78** | **0.66** | **0.42** | **0.80** |
|
121 |
+
| titulm-gemma-2-2b-v1.0 | 0-shot | 0.39 | 0.70 | 0.35 | 0.39 | 0.76 |
|
122 |
+
| | 5-shot | 0.44 | 0.75 | 0.52 | 0.39 | 0.77 |
|
123 |
|
124 |
### Instruction Tuned Models
|
125 |
|
|
|
127 |
### Intended Use
|
128 |
- Bangla text generation
|
129 |
- Bangla language understanding tasks
|
130 |
+
- Bangla instruction fine-tuning tasks
|
|