SKNahin commited on
Commit
cdc67af
1 Parent(s): 583bce7

Training in progress, step 3200

Browse files
model-00001-of-00002.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f34cae3fab9c8ec5ea11464dd24236ddae6333b02fdf637881b3d0adca547e25
3
  size 4988025760
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbb1e84d77a5deed97b10d045242dbaece7d340be0b9efb4809f99cf708c119d
3
  size 4988025760
model-00002-of-00002.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:53b9707b26ea05c3c7423de33aa3a64c775fd2103303d0de2bcc6f35ce565f09
3
  size 240691728
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25e6d66ab5b7541b26588959d906d6dad3a447091db1fa8818ca69279e2a253b
3
  size 240691728
trainer_log.jsonl CHANGED
@@ -2812,3 +2812,402 @@
2812
  {"current_steps": 2812, "total_steps": 3906, "loss": 1.3069, "learning_rate": 7.396338258426521e-06, "epoch": 0.719872, "percentage": 71.99, "elapsed_time": "10:20:16", "remaining_time": "4:01:19"}
2813
  {"current_steps": 2813, "total_steps": 3906, "loss": 1.3661, "learning_rate": 7.383723286008402e-06, "epoch": 0.720128, "percentage": 72.02, "elapsed_time": "10:20:29", "remaining_time": "4:01:05"}
2814
  {"current_steps": 2814, "total_steps": 3906, "loss": 1.3135, "learning_rate": 7.371116644783905e-06, "epoch": 0.720384, "percentage": 72.04, "elapsed_time": "10:20:42", "remaining_time": "4:00:52"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2812
  {"current_steps": 2812, "total_steps": 3906, "loss": 1.3069, "learning_rate": 7.396338258426521e-06, "epoch": 0.719872, "percentage": 71.99, "elapsed_time": "10:20:16", "remaining_time": "4:01:19"}
2813
  {"current_steps": 2813, "total_steps": 3906, "loss": 1.3661, "learning_rate": 7.383723286008402e-06, "epoch": 0.720128, "percentage": 72.02, "elapsed_time": "10:20:29", "remaining_time": "4:01:05"}
2814
  {"current_steps": 2814, "total_steps": 3906, "loss": 1.3135, "learning_rate": 7.371116644783905e-06, "epoch": 0.720384, "percentage": 72.04, "elapsed_time": "10:20:42", "remaining_time": "4:00:52"}
2815
+ {"current_steps": 2815, "total_steps": 3906, "loss": 1.3066, "learning_rate": 7.358518343077863e-06, "epoch": 0.72064, "percentage": 72.07, "elapsed_time": "10:20:56", "remaining_time": "4:00:39"}
2816
+ {"current_steps": 2816, "total_steps": 3906, "loss": 1.2991, "learning_rate": 7.3459283892096e-06, "epoch": 0.720896, "percentage": 72.09, "elapsed_time": "10:21:09", "remaining_time": "4:00:25"}
2817
+ {"current_steps": 2817, "total_steps": 3906, "loss": 1.3247, "learning_rate": 7.333346791492928e-06, "epoch": 0.721152, "percentage": 72.12, "elapsed_time": "10:21:22", "remaining_time": "4:00:12"}
2818
+ {"current_steps": 2818, "total_steps": 3906, "loss": 1.3523, "learning_rate": 7.320773558236145e-06, "epoch": 0.721408, "percentage": 72.15, "elapsed_time": "10:21:35", "remaining_time": "3:59:59"}
2819
+ {"current_steps": 2819, "total_steps": 3906, "loss": 1.2936, "learning_rate": 7.308208697742005e-06, "epoch": 0.721664, "percentage": 72.17, "elapsed_time": "10:21:48", "remaining_time": "3:59:46"}
2820
+ {"current_steps": 2820, "total_steps": 3906, "loss": 1.3391, "learning_rate": 7.295652218307763e-06, "epoch": 0.72192, "percentage": 72.2, "elapsed_time": "10:22:02", "remaining_time": "3:59:32"}
2821
+ {"current_steps": 2821, "total_steps": 3906, "loss": 1.3389, "learning_rate": 7.283104128225118e-06, "epoch": 0.722176, "percentage": 72.22, "elapsed_time": "10:22:15", "remaining_time": "3:59:19"}
2822
+ {"current_steps": 2822, "total_steps": 3906, "loss": 1.3178, "learning_rate": 7.270564435780247e-06, "epoch": 0.722432, "percentage": 72.25, "elapsed_time": "10:22:28", "remaining_time": "3:59:06"}
2823
+ {"current_steps": 2823, "total_steps": 3906, "loss": 1.3309, "learning_rate": 7.2580331492537555e-06, "epoch": 0.722688, "percentage": 72.27, "elapsed_time": "10:22:41", "remaining_time": "3:58:53"}
2824
+ {"current_steps": 2824, "total_steps": 3906, "loss": 1.3333, "learning_rate": 7.245510276920729e-06, "epoch": 0.722944, "percentage": 72.3, "elapsed_time": "10:22:54", "remaining_time": "3:58:39"}
2825
+ {"current_steps": 2825, "total_steps": 3906, "loss": 1.3041, "learning_rate": 7.232995827050666e-06, "epoch": 0.7232, "percentage": 72.32, "elapsed_time": "10:23:08", "remaining_time": "3:58:26"}
2826
+ {"current_steps": 2826, "total_steps": 3906, "loss": 1.3441, "learning_rate": 7.220489807907527e-06, "epoch": 0.723456, "percentage": 72.35, "elapsed_time": "10:23:21", "remaining_time": "3:58:13"}
2827
+ {"current_steps": 2827, "total_steps": 3906, "loss": 1.3322, "learning_rate": 7.207992227749694e-06, "epoch": 0.723712, "percentage": 72.38, "elapsed_time": "10:23:34", "remaining_time": "3:58:00"}
2828
+ {"current_steps": 2828, "total_steps": 3906, "loss": 1.3529, "learning_rate": 7.195503094829983e-06, "epoch": 0.723968, "percentage": 72.4, "elapsed_time": "10:23:47", "remaining_time": "3:57:46"}
2829
+ {"current_steps": 2829, "total_steps": 3906, "loss": 1.3253, "learning_rate": 7.1830224173956245e-06, "epoch": 0.724224, "percentage": 72.43, "elapsed_time": "10:24:00", "remaining_time": "3:57:33"}
2830
+ {"current_steps": 2830, "total_steps": 3906, "loss": 1.3274, "learning_rate": 7.170550203688278e-06, "epoch": 0.72448, "percentage": 72.45, "elapsed_time": "10:24:13", "remaining_time": "3:57:20"}
2831
+ {"current_steps": 2831, "total_steps": 3906, "loss": 1.3257, "learning_rate": 7.158086461943987e-06, "epoch": 0.724736, "percentage": 72.48, "elapsed_time": "10:24:27", "remaining_time": "3:57:07"}
2832
+ {"current_steps": 2832, "total_steps": 3906, "loss": 1.318, "learning_rate": 7.14563120039323e-06, "epoch": 0.724992, "percentage": 72.5, "elapsed_time": "10:24:40", "remaining_time": "3:56:53"}
2833
+ {"current_steps": 2833, "total_steps": 3906, "loss": 1.3397, "learning_rate": 7.1331844272608795e-06, "epoch": 0.725248, "percentage": 72.53, "elapsed_time": "10:24:53", "remaining_time": "3:56:40"}
2834
+ {"current_steps": 2834, "total_steps": 3906, "loss": 1.3155, "learning_rate": 7.1207461507661805e-06, "epoch": 0.725504, "percentage": 72.56, "elapsed_time": "10:25:06", "remaining_time": "3:56:27"}
2835
+ {"current_steps": 2835, "total_steps": 3906, "loss": 1.3311, "learning_rate": 7.108316379122793e-06, "epoch": 0.72576, "percentage": 72.58, "elapsed_time": "10:25:20", "remaining_time": "3:56:14"}
2836
+ {"current_steps": 2836, "total_steps": 3906, "loss": 1.358, "learning_rate": 7.095895120538758e-06, "epoch": 0.726016, "percentage": 72.61, "elapsed_time": "10:25:33", "remaining_time": "3:56:00"}
2837
+ {"current_steps": 2837, "total_steps": 3906, "loss": 1.349, "learning_rate": 7.083482383216473e-06, "epoch": 0.726272, "percentage": 72.63, "elapsed_time": "10:25:46", "remaining_time": "3:55:47"}
2838
+ {"current_steps": 2838, "total_steps": 3906, "loss": 1.3498, "learning_rate": 7.0710781753527325e-06, "epoch": 0.726528, "percentage": 72.66, "elapsed_time": "10:25:59", "remaining_time": "3:55:34"}
2839
+ {"current_steps": 2839, "total_steps": 3906, "loss": 1.3381, "learning_rate": 7.05868250513869e-06, "epoch": 0.726784, "percentage": 72.68, "elapsed_time": "10:26:12", "remaining_time": "3:55:21"}
2840
+ {"current_steps": 2840, "total_steps": 3906, "loss": 1.3779, "learning_rate": 7.04629538075986e-06, "epoch": 0.72704, "percentage": 72.71, "elapsed_time": "10:26:25", "remaining_time": "3:55:07"}
2841
+ {"current_steps": 2841, "total_steps": 3906, "loss": 1.3314, "learning_rate": 7.033916810396115e-06, "epoch": 0.727296, "percentage": 72.73, "elapsed_time": "10:26:39", "remaining_time": "3:54:54"}
2842
+ {"current_steps": 2842, "total_steps": 3906, "loss": 1.303, "learning_rate": 7.021546802221686e-06, "epoch": 0.727552, "percentage": 72.76, "elapsed_time": "10:26:52", "remaining_time": "3:54:41"}
2843
+ {"current_steps": 2843, "total_steps": 3906, "loss": 1.3039, "learning_rate": 7.009185364405129e-06, "epoch": 0.727808, "percentage": 72.79, "elapsed_time": "10:27:05", "remaining_time": "3:54:28"}
2844
+ {"current_steps": 2844, "total_steps": 3906, "loss": 1.2821, "learning_rate": 6.996832505109359e-06, "epoch": 0.728064, "percentage": 72.81, "elapsed_time": "10:27:18", "remaining_time": "3:54:14"}
2845
+ {"current_steps": 2845, "total_steps": 3906, "loss": 1.3253, "learning_rate": 6.984488232491628e-06, "epoch": 0.72832, "percentage": 72.84, "elapsed_time": "10:27:31", "remaining_time": "3:54:01"}
2846
+ {"current_steps": 2846, "total_steps": 3906, "loss": 1.3692, "learning_rate": 6.972152554703499e-06, "epoch": 0.728576, "percentage": 72.86, "elapsed_time": "10:27:45", "remaining_time": "3:53:48"}
2847
+ {"current_steps": 2847, "total_steps": 3906, "loss": 1.3242, "learning_rate": 6.95982547989088e-06, "epoch": 0.728832, "percentage": 72.89, "elapsed_time": "10:27:58", "remaining_time": "3:53:35"}
2848
+ {"current_steps": 2848, "total_steps": 3906, "loss": 1.3551, "learning_rate": 6.947507016193986e-06, "epoch": 0.729088, "percentage": 72.91, "elapsed_time": "10:28:11", "remaining_time": "3:53:21"}
2849
+ {"current_steps": 2849, "total_steps": 3906, "loss": 1.2984, "learning_rate": 6.935197171747357e-06, "epoch": 0.729344, "percentage": 72.94, "elapsed_time": "10:28:24", "remaining_time": "3:53:08"}
2850
+ {"current_steps": 2850, "total_steps": 3906, "loss": 1.3006, "learning_rate": 6.922895954679818e-06, "epoch": 0.7296, "percentage": 72.96, "elapsed_time": "10:28:37", "remaining_time": "3:52:55"}
2851
+ {"current_steps": 2851, "total_steps": 3906, "loss": 1.29, "learning_rate": 6.910603373114522e-06, "epoch": 0.729856, "percentage": 72.99, "elapsed_time": "10:28:50", "remaining_time": "3:52:42"}
2852
+ {"current_steps": 2852, "total_steps": 3906, "loss": 1.2919, "learning_rate": 6.898319435168905e-06, "epoch": 0.730112, "percentage": 73.02, "elapsed_time": "10:29:04", "remaining_time": "3:52:28"}
2853
+ {"current_steps": 2853, "total_steps": 3906, "loss": 1.3342, "learning_rate": 6.886044148954707e-06, "epoch": 0.730368, "percentage": 73.04, "elapsed_time": "10:29:17", "remaining_time": "3:52:15"}
2854
+ {"current_steps": 2854, "total_steps": 3906, "loss": 1.307, "learning_rate": 6.8737775225779405e-06, "epoch": 0.730624, "percentage": 73.07, "elapsed_time": "10:29:30", "remaining_time": "3:52:02"}
2855
+ {"current_steps": 2855, "total_steps": 3906, "loss": 1.3487, "learning_rate": 6.8615195641389165e-06, "epoch": 0.73088, "percentage": 73.09, "elapsed_time": "10:29:43", "remaining_time": "3:51:49"}
2856
+ {"current_steps": 2856, "total_steps": 3906, "loss": 1.3184, "learning_rate": 6.849270281732206e-06, "epoch": 0.731136, "percentage": 73.12, "elapsed_time": "10:29:57", "remaining_time": "3:51:35"}
2857
+ {"current_steps": 2857, "total_steps": 3906, "loss": 1.3433, "learning_rate": 6.837029683446647e-06, "epoch": 0.731392, "percentage": 73.14, "elapsed_time": "10:30:10", "remaining_time": "3:51:22"}
2858
+ {"current_steps": 2858, "total_steps": 3906, "loss": 1.3206, "learning_rate": 6.824797777365364e-06, "epoch": 0.731648, "percentage": 73.17, "elapsed_time": "10:30:23", "remaining_time": "3:51:09"}
2859
+ {"current_steps": 2859, "total_steps": 3906, "loss": 1.3208, "learning_rate": 6.812574571565729e-06, "epoch": 0.731904, "percentage": 73.2, "elapsed_time": "10:30:36", "remaining_time": "3:50:56"}
2860
+ {"current_steps": 2860, "total_steps": 3906, "loss": 1.3335, "learning_rate": 6.800360074119367e-06, "epoch": 0.73216, "percentage": 73.22, "elapsed_time": "10:30:49", "remaining_time": "3:50:42"}
2861
+ {"current_steps": 2861, "total_steps": 3906, "loss": 1.3689, "learning_rate": 6.788154293092166e-06, "epoch": 0.732416, "percentage": 73.25, "elapsed_time": "10:31:02", "remaining_time": "3:50:29"}
2862
+ {"current_steps": 2862, "total_steps": 3906, "loss": 1.3548, "learning_rate": 6.775957236544231e-06, "epoch": 0.732672, "percentage": 73.27, "elapsed_time": "10:31:16", "remaining_time": "3:50:16"}
2863
+ {"current_steps": 2863, "total_steps": 3906, "loss": 1.3654, "learning_rate": 6.763768912529934e-06, "epoch": 0.732928, "percentage": 73.3, "elapsed_time": "10:31:29", "remaining_time": "3:50:03"}
2864
+ {"current_steps": 2864, "total_steps": 3906, "loss": 1.371, "learning_rate": 6.751589329097863e-06, "epoch": 0.733184, "percentage": 73.32, "elapsed_time": "10:31:42", "remaining_time": "3:49:49"}
2865
+ {"current_steps": 2865, "total_steps": 3906, "loss": 1.3323, "learning_rate": 6.739418494290844e-06, "epoch": 0.73344, "percentage": 73.35, "elapsed_time": "10:31:55", "remaining_time": "3:49:36"}
2866
+ {"current_steps": 2866, "total_steps": 3906, "loss": 1.3802, "learning_rate": 6.727256416145926e-06, "epoch": 0.733696, "percentage": 73.37, "elapsed_time": "10:32:08", "remaining_time": "3:49:23"}
2867
+ {"current_steps": 2867, "total_steps": 3906, "loss": 1.3649, "learning_rate": 6.71510310269436e-06, "epoch": 0.733952, "percentage": 73.4, "elapsed_time": "10:32:22", "remaining_time": "3:49:10"}
2868
+ {"current_steps": 2868, "total_steps": 3906, "loss": 1.3407, "learning_rate": 6.702958561961635e-06, "epoch": 0.734208, "percentage": 73.43, "elapsed_time": "10:32:35", "remaining_time": "3:48:56"}
2869
+ {"current_steps": 2869, "total_steps": 3906, "loss": 1.2999, "learning_rate": 6.690822801967414e-06, "epoch": 0.734464, "percentage": 73.45, "elapsed_time": "10:32:48", "remaining_time": "3:48:43"}
2870
+ {"current_steps": 2870, "total_steps": 3906, "loss": 1.362, "learning_rate": 6.678695830725593e-06, "epoch": 0.73472, "percentage": 73.48, "elapsed_time": "10:33:01", "remaining_time": "3:48:30"}
2871
+ {"current_steps": 2871, "total_steps": 3906, "loss": 1.3113, "learning_rate": 6.666577656244246e-06, "epoch": 0.734976, "percentage": 73.5, "elapsed_time": "10:33:14", "remaining_time": "3:48:17"}
2872
+ {"current_steps": 2872, "total_steps": 3906, "loss": 1.3518, "learning_rate": 6.654468286525646e-06, "epoch": 0.735232, "percentage": 73.53, "elapsed_time": "10:33:27", "remaining_time": "3:48:03"}
2873
+ {"current_steps": 2873, "total_steps": 3906, "loss": 1.3479, "learning_rate": 6.642367729566257e-06, "epoch": 0.735488, "percentage": 73.55, "elapsed_time": "10:33:40", "remaining_time": "3:47:50"}
2874
+ {"current_steps": 2874, "total_steps": 3906, "loss": 1.3208, "learning_rate": 6.6302759933567e-06, "epoch": 0.735744, "percentage": 73.58, "elapsed_time": "10:33:54", "remaining_time": "3:47:37"}
2875
+ {"current_steps": 2875, "total_steps": 3906, "loss": 1.3988, "learning_rate": 6.618193085881794e-06, "epoch": 0.736, "percentage": 73.6, "elapsed_time": "10:34:07", "remaining_time": "3:47:24"}
2876
+ {"current_steps": 2876, "total_steps": 3906, "loss": 1.3577, "learning_rate": 6.606119015120522e-06, "epoch": 0.736256, "percentage": 73.63, "elapsed_time": "10:34:20", "remaining_time": "3:47:10"}
2877
+ {"current_steps": 2877, "total_steps": 3906, "loss": 1.3452, "learning_rate": 6.594053789046031e-06, "epoch": 0.736512, "percentage": 73.66, "elapsed_time": "10:34:33", "remaining_time": "3:46:57"}
2878
+ {"current_steps": 2878, "total_steps": 3906, "loss": 1.2782, "learning_rate": 6.58199741562563e-06, "epoch": 0.736768, "percentage": 73.68, "elapsed_time": "10:34:47", "remaining_time": "3:46:44"}
2879
+ {"current_steps": 2879, "total_steps": 3906, "loss": 1.3597, "learning_rate": 6.569949902820776e-06, "epoch": 0.737024, "percentage": 73.71, "elapsed_time": "10:35:00", "remaining_time": "3:46:31"}
2880
+ {"current_steps": 2880, "total_steps": 3906, "loss": 1.3059, "learning_rate": 6.557911258587069e-06, "epoch": 0.73728, "percentage": 73.73, "elapsed_time": "10:35:13", "remaining_time": "3:46:17"}
2881
+ {"current_steps": 2881, "total_steps": 3906, "loss": 1.3375, "learning_rate": 6.545881490874267e-06, "epoch": 0.737536, "percentage": 73.76, "elapsed_time": "10:35:26", "remaining_time": "3:46:04"}
2882
+ {"current_steps": 2882, "total_steps": 3906, "loss": 1.3383, "learning_rate": 6.533860607626263e-06, "epoch": 0.737792, "percentage": 73.78, "elapsed_time": "10:35:39", "remaining_time": "3:45:51"}
2883
+ {"current_steps": 2883, "total_steps": 3906, "loss": 1.3168, "learning_rate": 6.521848616781079e-06, "epoch": 0.738048, "percentage": 73.81, "elapsed_time": "10:35:52", "remaining_time": "3:45:38"}
2884
+ {"current_steps": 2884, "total_steps": 3906, "loss": 1.31, "learning_rate": 6.50984552627087e-06, "epoch": 0.738304, "percentage": 73.84, "elapsed_time": "10:36:05", "remaining_time": "3:45:24"}
2885
+ {"current_steps": 2885, "total_steps": 3906, "loss": 1.3455, "learning_rate": 6.4978513440219125e-06, "epoch": 0.73856, "percentage": 73.86, "elapsed_time": "10:36:19", "remaining_time": "3:45:11"}
2886
+ {"current_steps": 2886, "total_steps": 3906, "loss": 1.2849, "learning_rate": 6.48586607795459e-06, "epoch": 0.738816, "percentage": 73.89, "elapsed_time": "10:36:32", "remaining_time": "3:44:58"}
2887
+ {"current_steps": 2887, "total_steps": 3906, "loss": 1.2776, "learning_rate": 6.47388973598341e-06, "epoch": 0.739072, "percentage": 73.91, "elapsed_time": "10:36:45", "remaining_time": "3:44:45"}
2888
+ {"current_steps": 2888, "total_steps": 3906, "loss": 1.3508, "learning_rate": 6.461922326016983e-06, "epoch": 0.739328, "percentage": 73.94, "elapsed_time": "10:36:58", "remaining_time": "3:44:31"}
2889
+ {"current_steps": 2889, "total_steps": 3906, "loss": 1.3544, "learning_rate": 6.449963855958031e-06, "epoch": 0.739584, "percentage": 73.96, "elapsed_time": "10:37:11", "remaining_time": "3:44:18"}
2890
+ {"current_steps": 2890, "total_steps": 3906, "loss": 1.3264, "learning_rate": 6.438014333703346e-06, "epoch": 0.73984, "percentage": 73.99, "elapsed_time": "10:37:25", "remaining_time": "3:44:05"}
2891
+ {"current_steps": 2891, "total_steps": 3906, "loss": 1.3366, "learning_rate": 6.426073767143845e-06, "epoch": 0.740096, "percentage": 74.01, "elapsed_time": "10:37:38", "remaining_time": "3:43:52"}
2892
+ {"current_steps": 2892, "total_steps": 3906, "loss": 1.3598, "learning_rate": 6.414142164164501e-06, "epoch": 0.740352, "percentage": 74.04, "elapsed_time": "10:37:51", "remaining_time": "3:43:38"}
2893
+ {"current_steps": 2893, "total_steps": 3906, "loss": 1.3666, "learning_rate": 6.402219532644385e-06, "epoch": 0.740608, "percentage": 74.07, "elapsed_time": "10:38:04", "remaining_time": "3:43:25"}
2894
+ {"current_steps": 2894, "total_steps": 3906, "loss": 1.3346, "learning_rate": 6.3903058804566445e-06, "epoch": 0.740864, "percentage": 74.09, "elapsed_time": "10:38:17", "remaining_time": "3:43:12"}
2895
+ {"current_steps": 2895, "total_steps": 3906, "loss": 1.2751, "learning_rate": 6.3784012154684885e-06, "epoch": 0.74112, "percentage": 74.12, "elapsed_time": "10:38:31", "remaining_time": "3:42:59"}
2896
+ {"current_steps": 2896, "total_steps": 3906, "loss": 1.2907, "learning_rate": 6.3665055455412e-06, "epoch": 0.741376, "percentage": 74.14, "elapsed_time": "10:38:44", "remaining_time": "3:42:45"}
2897
+ {"current_steps": 2897, "total_steps": 3906, "loss": 1.3358, "learning_rate": 6.354618878530123e-06, "epoch": 0.741632, "percentage": 74.17, "elapsed_time": "10:38:57", "remaining_time": "3:42:32"}
2898
+ {"current_steps": 2898, "total_steps": 3906, "loss": 1.3622, "learning_rate": 6.342741222284636e-06, "epoch": 0.741888, "percentage": 74.19, "elapsed_time": "10:39:10", "remaining_time": "3:42:19"}
2899
+ {"current_steps": 2899, "total_steps": 3906, "loss": 1.3202, "learning_rate": 6.330872584648193e-06, "epoch": 0.742144, "percentage": 74.22, "elapsed_time": "10:39:23", "remaining_time": "3:42:06"}
2900
+ {"current_steps": 2900, "total_steps": 3906, "loss": 1.3469, "learning_rate": 6.319012973458278e-06, "epoch": 0.7424, "percentage": 74.24, "elapsed_time": "10:39:37", "remaining_time": "3:41:52"}
2901
+ {"current_steps": 2901, "total_steps": 3906, "loss": 1.3392, "learning_rate": 6.307162396546429e-06, "epoch": 0.742656, "percentage": 74.27, "elapsed_time": "10:39:50", "remaining_time": "3:41:39"}
2902
+ {"current_steps": 2902, "total_steps": 3906, "loss": 1.3629, "learning_rate": 6.29532086173819e-06, "epoch": 0.742912, "percentage": 74.3, "elapsed_time": "10:40:03", "remaining_time": "3:41:26"}
2903
+ {"current_steps": 2903, "total_steps": 3906, "loss": 1.345, "learning_rate": 6.283488376853168e-06, "epoch": 0.743168, "percentage": 74.32, "elapsed_time": "10:40:16", "remaining_time": "3:41:13"}
2904
+ {"current_steps": 2904, "total_steps": 3906, "loss": 1.2677, "learning_rate": 6.2716649497049654e-06, "epoch": 0.743424, "percentage": 74.35, "elapsed_time": "10:40:29", "remaining_time": "3:40:59"}
2905
+ {"current_steps": 2905, "total_steps": 3906, "loss": 1.3086, "learning_rate": 6.2598505881012195e-06, "epoch": 0.74368, "percentage": 74.37, "elapsed_time": "10:40:42", "remaining_time": "3:40:46"}
2906
+ {"current_steps": 2906, "total_steps": 3906, "loss": 1.3277, "learning_rate": 6.248045299843577e-06, "epoch": 0.743936, "percentage": 74.4, "elapsed_time": "10:40:56", "remaining_time": "3:40:33"}
2907
+ {"current_steps": 2907, "total_steps": 3906, "loss": 1.3242, "learning_rate": 6.236249092727693e-06, "epoch": 0.744192, "percentage": 74.42, "elapsed_time": "10:41:09", "remaining_time": "3:40:20"}
2908
+ {"current_steps": 2908, "total_steps": 3906, "loss": 1.3118, "learning_rate": 6.224461974543227e-06, "epoch": 0.744448, "percentage": 74.45, "elapsed_time": "10:41:22", "remaining_time": "3:40:06"}
2909
+ {"current_steps": 2909, "total_steps": 3906, "loss": 1.2856, "learning_rate": 6.212683953073837e-06, "epoch": 0.744704, "percentage": 74.48, "elapsed_time": "10:41:35", "remaining_time": "3:39:53"}
2910
+ {"current_steps": 2910, "total_steps": 3906, "loss": 1.3546, "learning_rate": 6.200915036097177e-06, "epoch": 0.74496, "percentage": 74.5, "elapsed_time": "10:41:48", "remaining_time": "3:39:40"}
2911
+ {"current_steps": 2911, "total_steps": 3906, "loss": 1.3364, "learning_rate": 6.189155231384869e-06, "epoch": 0.745216, "percentage": 74.53, "elapsed_time": "10:42:02", "remaining_time": "3:39:27"}
2912
+ {"current_steps": 2912, "total_steps": 3906, "loss": 1.364, "learning_rate": 6.17740454670255e-06, "epoch": 0.745472, "percentage": 74.55, "elapsed_time": "10:42:15", "remaining_time": "3:39:13"}
2913
+ {"current_steps": 2913, "total_steps": 3906, "loss": 1.3252, "learning_rate": 6.165662989809802e-06, "epoch": 0.745728, "percentage": 74.58, "elapsed_time": "10:42:28", "remaining_time": "3:39:00"}
2914
+ {"current_steps": 2914, "total_steps": 3906, "loss": 1.3209, "learning_rate": 6.1539305684602e-06, "epoch": 0.745984, "percentage": 74.6, "elapsed_time": "10:42:41", "remaining_time": "3:38:47"}
2915
+ {"current_steps": 2915, "total_steps": 3906, "loss": 1.3303, "learning_rate": 6.1422072904012855e-06, "epoch": 0.74624, "percentage": 74.63, "elapsed_time": "10:42:54", "remaining_time": "3:38:34"}
2916
+ {"current_steps": 2916, "total_steps": 3906, "loss": 1.3529, "learning_rate": 6.130493163374562e-06, "epoch": 0.746496, "percentage": 74.65, "elapsed_time": "10:43:07", "remaining_time": "3:38:20"}
2917
+ {"current_steps": 2917, "total_steps": 3906, "loss": 1.3091, "learning_rate": 6.1187881951154745e-06, "epoch": 0.746752, "percentage": 74.68, "elapsed_time": "10:43:21", "remaining_time": "3:38:07"}
2918
+ {"current_steps": 2918, "total_steps": 3906, "loss": 1.3253, "learning_rate": 6.107092393353436e-06, "epoch": 0.747008, "percentage": 74.71, "elapsed_time": "10:43:34", "remaining_time": "3:37:54"}
2919
+ {"current_steps": 2919, "total_steps": 3906, "loss": 1.345, "learning_rate": 6.095405765811804e-06, "epoch": 0.747264, "percentage": 74.73, "elapsed_time": "10:43:47", "remaining_time": "3:37:41"}
2920
+ {"current_steps": 2920, "total_steps": 3906, "loss": 1.3315, "learning_rate": 6.083728320207873e-06, "epoch": 0.74752, "percentage": 74.76, "elapsed_time": "10:44:00", "remaining_time": "3:37:27"}
2921
+ {"current_steps": 2921, "total_steps": 3906, "loss": 1.3365, "learning_rate": 6.072060064252878e-06, "epoch": 0.747776, "percentage": 74.78, "elapsed_time": "10:44:13", "remaining_time": "3:37:14"}
2922
+ {"current_steps": 2922, "total_steps": 3906, "loss": 1.3555, "learning_rate": 6.060401005651992e-06, "epoch": 0.748032, "percentage": 74.81, "elapsed_time": "10:44:26", "remaining_time": "3:37:01"}
2923
+ {"current_steps": 2923, "total_steps": 3906, "loss": 1.3359, "learning_rate": 6.0487511521042954e-06, "epoch": 0.748288, "percentage": 74.83, "elapsed_time": "10:44:40", "remaining_time": "3:36:48"}
2924
+ {"current_steps": 2924, "total_steps": 3906, "loss": 1.3475, "learning_rate": 6.037110511302811e-06, "epoch": 0.748544, "percentage": 74.86, "elapsed_time": "10:44:53", "remaining_time": "3:36:34"}
2925
+ {"current_steps": 2925, "total_steps": 3906, "loss": 1.3532, "learning_rate": 6.025479090934456e-06, "epoch": 0.7488, "percentage": 74.88, "elapsed_time": "10:45:06", "remaining_time": "3:36:21"}
2926
+ {"current_steps": 2926, "total_steps": 3906, "loss": 1.2774, "learning_rate": 6.013856898680081e-06, "epoch": 0.749056, "percentage": 74.91, "elapsed_time": "10:45:19", "remaining_time": "3:36:08"}
2927
+ {"current_steps": 2927, "total_steps": 3906, "loss": 1.2854, "learning_rate": 6.00224394221443e-06, "epoch": 0.749312, "percentage": 74.94, "elapsed_time": "10:45:32", "remaining_time": "3:35:55"}
2928
+ {"current_steps": 2928, "total_steps": 3906, "loss": 1.325, "learning_rate": 5.990640229206159e-06, "epoch": 0.749568, "percentage": 74.96, "elapsed_time": "10:45:46", "remaining_time": "3:35:41"}
2929
+ {"current_steps": 2929, "total_steps": 3906, "loss": 1.3271, "learning_rate": 5.9790457673177995e-06, "epoch": 0.749824, "percentage": 74.99, "elapsed_time": "10:45:59", "remaining_time": "3:35:28"}
2930
+ {"current_steps": 2930, "total_steps": 3906, "loss": 1.3238, "learning_rate": 5.9674605642057914e-06, "epoch": 0.75008, "percentage": 75.01, "elapsed_time": "10:46:12", "remaining_time": "3:35:15"}
2931
+ {"current_steps": 2931, "total_steps": 3906, "loss": 1.3031, "learning_rate": 5.9558846275204605e-06, "epoch": 0.750336, "percentage": 75.04, "elapsed_time": "10:46:25", "remaining_time": "3:35:02"}
2932
+ {"current_steps": 2932, "total_steps": 3906, "loss": 1.3183, "learning_rate": 5.944317964906004e-06, "epoch": 0.750592, "percentage": 75.06, "elapsed_time": "10:46:38", "remaining_time": "3:34:48"}
2933
+ {"current_steps": 2933, "total_steps": 3906, "loss": 1.3381, "learning_rate": 5.932760584000509e-06, "epoch": 0.750848, "percentage": 75.09, "elapsed_time": "10:46:52", "remaining_time": "3:34:35"}
2934
+ {"current_steps": 2934, "total_steps": 3906, "loss": 1.3308, "learning_rate": 5.921212492435913e-06, "epoch": 0.751104, "percentage": 75.12, "elapsed_time": "10:47:05", "remaining_time": "3:34:22"}
2935
+ {"current_steps": 2935, "total_steps": 3906, "loss": 1.2989, "learning_rate": 5.9096736978380384e-06, "epoch": 0.75136, "percentage": 75.14, "elapsed_time": "10:47:18", "remaining_time": "3:34:09"}
2936
+ {"current_steps": 2936, "total_steps": 3906, "loss": 1.333, "learning_rate": 5.898144207826553e-06, "epoch": 0.751616, "percentage": 75.17, "elapsed_time": "10:47:31", "remaining_time": "3:33:55"}
2937
+ {"current_steps": 2937, "total_steps": 3906, "loss": 1.3047, "learning_rate": 5.886624030014989e-06, "epoch": 0.751872, "percentage": 75.19, "elapsed_time": "10:47:44", "remaining_time": "3:33:42"}
2938
+ {"current_steps": 2938, "total_steps": 3906, "loss": 1.3057, "learning_rate": 5.875113172010733e-06, "epoch": 0.752128, "percentage": 75.22, "elapsed_time": "10:47:57", "remaining_time": "3:33:29"}
2939
+ {"current_steps": 2939, "total_steps": 3906, "loss": 1.3205, "learning_rate": 5.86361164141501e-06, "epoch": 0.752384, "percentage": 75.24, "elapsed_time": "10:48:11", "remaining_time": "3:33:16"}
2940
+ {"current_steps": 2940, "total_steps": 3906, "loss": 1.3417, "learning_rate": 5.852119445822895e-06, "epoch": 0.75264, "percentage": 75.27, "elapsed_time": "10:48:24", "remaining_time": "3:33:02"}
2941
+ {"current_steps": 2941, "total_steps": 3906, "loss": 1.3426, "learning_rate": 5.8406365928232764e-06, "epoch": 0.752896, "percentage": 75.29, "elapsed_time": "10:48:37", "remaining_time": "3:32:49"}
2942
+ {"current_steps": 2942, "total_steps": 3906, "loss": 1.3225, "learning_rate": 5.8291630899988995e-06, "epoch": 0.753152, "percentage": 75.32, "elapsed_time": "10:48:50", "remaining_time": "3:32:36"}
2943
+ {"current_steps": 2943, "total_steps": 3906, "loss": 1.3255, "learning_rate": 5.8176989449263176e-06, "epoch": 0.753408, "percentage": 75.35, "elapsed_time": "10:49:03", "remaining_time": "3:32:23"}
2944
+ {"current_steps": 2944, "total_steps": 3906, "loss": 1.303, "learning_rate": 5.8062441651759165e-06, "epoch": 0.753664, "percentage": 75.37, "elapsed_time": "10:49:17", "remaining_time": "3:32:09"}
2945
+ {"current_steps": 2945, "total_steps": 3906, "loss": 1.3658, "learning_rate": 5.794798758311894e-06, "epoch": 0.75392, "percentage": 75.4, "elapsed_time": "10:49:30", "remaining_time": "3:31:56"}
2946
+ {"current_steps": 2946, "total_steps": 3906, "loss": 1.2817, "learning_rate": 5.783362731892248e-06, "epoch": 0.754176, "percentage": 75.42, "elapsed_time": "10:49:43", "remaining_time": "3:31:43"}
2947
+ {"current_steps": 2947, "total_steps": 3906, "loss": 1.2832, "learning_rate": 5.7719360934688015e-06, "epoch": 0.754432, "percentage": 75.45, "elapsed_time": "10:49:56", "remaining_time": "3:31:30"}
2948
+ {"current_steps": 2948, "total_steps": 3906, "loss": 1.2969, "learning_rate": 5.760518850587154e-06, "epoch": 0.754688, "percentage": 75.47, "elapsed_time": "10:50:09", "remaining_time": "3:31:16"}
2949
+ {"current_steps": 2949, "total_steps": 3906, "loss": 1.3182, "learning_rate": 5.749111010786721e-06, "epoch": 0.754944, "percentage": 75.5, "elapsed_time": "10:50:23", "remaining_time": "3:31:03"}
2950
+ {"current_steps": 2950, "total_steps": 3906, "loss": 1.3072, "learning_rate": 5.7377125816007005e-06, "epoch": 0.7552, "percentage": 75.52, "elapsed_time": "10:50:36", "remaining_time": "3:30:50"}
2951
+ {"current_steps": 2951, "total_steps": 3906, "loss": 1.3345, "learning_rate": 5.726323570556076e-06, "epoch": 0.755456, "percentage": 75.55, "elapsed_time": "10:50:49", "remaining_time": "3:30:37"}
2952
+ {"current_steps": 2952, "total_steps": 3906, "loss": 1.3368, "learning_rate": 5.714943985173622e-06, "epoch": 0.755712, "percentage": 75.58, "elapsed_time": "10:51:02", "remaining_time": "3:30:23"}
2953
+ {"current_steps": 2953, "total_steps": 3906, "loss": 1.3475, "learning_rate": 5.7035738329678654e-06, "epoch": 0.755968, "percentage": 75.6, "elapsed_time": "10:51:15", "remaining_time": "3:30:10"}
2954
+ {"current_steps": 2954, "total_steps": 3906, "loss": 1.3553, "learning_rate": 5.692213121447126e-06, "epoch": 0.756224, "percentage": 75.63, "elapsed_time": "10:51:29", "remaining_time": "3:29:57"}
2955
+ {"current_steps": 2955, "total_steps": 3906, "loss": 1.3499, "learning_rate": 5.680861858113476e-06, "epoch": 0.75648, "percentage": 75.65, "elapsed_time": "10:51:42", "remaining_time": "3:29:44"}
2956
+ {"current_steps": 2956, "total_steps": 3906, "loss": 1.2952, "learning_rate": 5.6695200504627665e-06, "epoch": 0.756736, "percentage": 75.68, "elapsed_time": "10:51:55", "remaining_time": "3:29:30"}
2957
+ {"current_steps": 2957, "total_steps": 3906, "loss": 1.294, "learning_rate": 5.658187705984577e-06, "epoch": 0.756992, "percentage": 75.7, "elapsed_time": "10:52:08", "remaining_time": "3:29:17"}
2958
+ {"current_steps": 2958, "total_steps": 3906, "loss": 1.294, "learning_rate": 5.646864832162264e-06, "epoch": 0.757248, "percentage": 75.73, "elapsed_time": "10:52:21", "remaining_time": "3:29:04"}
2959
+ {"current_steps": 2959, "total_steps": 3906, "loss": 1.3435, "learning_rate": 5.635551436472908e-06, "epoch": 0.757504, "percentage": 75.76, "elapsed_time": "10:52:34", "remaining_time": "3:28:51"}
2960
+ {"current_steps": 2960, "total_steps": 3906, "loss": 1.2987, "learning_rate": 5.62424752638735e-06, "epoch": 0.75776, "percentage": 75.78, "elapsed_time": "10:52:47", "remaining_time": "3:28:37"}
2961
+ {"current_steps": 2961, "total_steps": 3906, "loss": 1.3131, "learning_rate": 5.612953109370154e-06, "epoch": 0.758016, "percentage": 75.81, "elapsed_time": "10:53:01", "remaining_time": "3:28:24"}
2962
+ {"current_steps": 2962, "total_steps": 3906, "loss": 1.3319, "learning_rate": 5.601668192879622e-06, "epoch": 0.758272, "percentage": 75.83, "elapsed_time": "10:53:14", "remaining_time": "3:28:11"}
2963
+ {"current_steps": 2963, "total_steps": 3906, "loss": 1.3344, "learning_rate": 5.59039278436778e-06, "epoch": 0.758528, "percentage": 75.86, "elapsed_time": "10:53:27", "remaining_time": "3:27:58"}
2964
+ {"current_steps": 2964, "total_steps": 3906, "loss": 1.3441, "learning_rate": 5.579126891280382e-06, "epoch": 0.758784, "percentage": 75.88, "elapsed_time": "10:53:40", "remaining_time": "3:27:44"}
2965
+ {"current_steps": 2965, "total_steps": 3906, "loss": 1.3562, "learning_rate": 5.56787052105688e-06, "epoch": 0.75904, "percentage": 75.91, "elapsed_time": "10:53:53", "remaining_time": "3:27:31"}
2966
+ {"current_steps": 2966, "total_steps": 3906, "loss": 1.3199, "learning_rate": 5.556623681130453e-06, "epoch": 0.759296, "percentage": 75.93, "elapsed_time": "10:54:07", "remaining_time": "3:27:18"}
2967
+ {"current_steps": 2967, "total_steps": 3906, "loss": 1.2876, "learning_rate": 5.545386378927988e-06, "epoch": 0.759552, "percentage": 75.96, "elapsed_time": "10:54:20", "remaining_time": "3:27:05"}
2968
+ {"current_steps": 2968, "total_steps": 3906, "loss": 1.3081, "learning_rate": 5.534158621870071e-06, "epoch": 0.759808, "percentage": 75.99, "elapsed_time": "10:54:33", "remaining_time": "3:26:51"}
2969
+ {"current_steps": 2969, "total_steps": 3906, "loss": 1.3377, "learning_rate": 5.522940417370975e-06, "epoch": 0.760064, "percentage": 76.01, "elapsed_time": "10:54:46", "remaining_time": "3:26:38"}
2970
+ {"current_steps": 2970, "total_steps": 3906, "loss": 1.3504, "learning_rate": 5.51173177283868e-06, "epoch": 0.76032, "percentage": 76.04, "elapsed_time": "10:54:59", "remaining_time": "3:26:25"}
2971
+ {"current_steps": 2971, "total_steps": 3906, "loss": 1.2842, "learning_rate": 5.500532695674836e-06, "epoch": 0.760576, "percentage": 76.06, "elapsed_time": "10:55:12", "remaining_time": "3:26:12"}
2972
+ {"current_steps": 2972, "total_steps": 3906, "loss": 1.2919, "learning_rate": 5.48934319327479e-06, "epoch": 0.760832, "percentage": 76.09, "elapsed_time": "10:55:25", "remaining_time": "3:25:58"}
2973
+ {"current_steps": 2973, "total_steps": 3906, "loss": 1.3262, "learning_rate": 5.478163273027561e-06, "epoch": 0.761088, "percentage": 76.11, "elapsed_time": "10:55:39", "remaining_time": "3:25:45"}
2974
+ {"current_steps": 2974, "total_steps": 3906, "loss": 1.317, "learning_rate": 5.466992942315843e-06, "epoch": 0.761344, "percentage": 76.14, "elapsed_time": "10:55:52", "remaining_time": "3:25:32"}
2975
+ {"current_steps": 2975, "total_steps": 3906, "loss": 1.3428, "learning_rate": 5.455832208515994e-06, "epoch": 0.7616, "percentage": 76.16, "elapsed_time": "10:56:05", "remaining_time": "3:25:19"}
2976
+ {"current_steps": 2976, "total_steps": 3906, "loss": 1.3137, "learning_rate": 5.444681078998035e-06, "epoch": 0.761856, "percentage": 76.19, "elapsed_time": "10:56:18", "remaining_time": "3:25:05"}
2977
+ {"current_steps": 2977, "total_steps": 3906, "loss": 1.2841, "learning_rate": 5.433539561125652e-06, "epoch": 0.762112, "percentage": 76.22, "elapsed_time": "10:56:31", "remaining_time": "3:24:52"}
2978
+ {"current_steps": 2978, "total_steps": 3906, "loss": 1.3131, "learning_rate": 5.4224076622561665e-06, "epoch": 0.762368, "percentage": 76.24, "elapsed_time": "10:56:44", "remaining_time": "3:24:39"}
2979
+ {"current_steps": 2979, "total_steps": 3906, "loss": 1.2842, "learning_rate": 5.411285389740568e-06, "epoch": 0.762624, "percentage": 76.27, "elapsed_time": "10:56:58", "remaining_time": "3:24:26"}
2980
+ {"current_steps": 2980, "total_steps": 3906, "loss": 1.3382, "learning_rate": 5.400172750923472e-06, "epoch": 0.76288, "percentage": 76.29, "elapsed_time": "10:57:11", "remaining_time": "3:24:12"}
2981
+ {"current_steps": 2981, "total_steps": 3906, "loss": 1.3465, "learning_rate": 5.389069753143143e-06, "epoch": 0.763136, "percentage": 76.32, "elapsed_time": "10:57:24", "remaining_time": "3:23:59"}
2982
+ {"current_steps": 2982, "total_steps": 3906, "loss": 1.2973, "learning_rate": 5.37797640373148e-06, "epoch": 0.763392, "percentage": 76.34, "elapsed_time": "10:57:37", "remaining_time": "3:23:46"}
2983
+ {"current_steps": 2983, "total_steps": 3906, "loss": 1.3099, "learning_rate": 5.3668927100140136e-06, "epoch": 0.763648, "percentage": 76.37, "elapsed_time": "10:57:50", "remaining_time": "3:23:33"}
2984
+ {"current_steps": 2984, "total_steps": 3906, "loss": 1.2857, "learning_rate": 5.3558186793098744e-06, "epoch": 0.763904, "percentage": 76.4, "elapsed_time": "10:58:04", "remaining_time": "3:23:19"}
2985
+ {"current_steps": 2985, "total_steps": 3906, "loss": 1.3453, "learning_rate": 5.344754318931842e-06, "epoch": 0.76416, "percentage": 76.42, "elapsed_time": "10:58:17", "remaining_time": "3:23:06"}
2986
+ {"current_steps": 2986, "total_steps": 3906, "loss": 1.3811, "learning_rate": 5.333699636186296e-06, "epoch": 0.764416, "percentage": 76.45, "elapsed_time": "10:58:30", "remaining_time": "3:22:53"}
2987
+ {"current_steps": 2987, "total_steps": 3906, "loss": 1.3639, "learning_rate": 5.322654638373224e-06, "epoch": 0.764672, "percentage": 76.47, "elapsed_time": "10:58:43", "remaining_time": "3:22:40"}
2988
+ {"current_steps": 2988, "total_steps": 3906, "loss": 1.3056, "learning_rate": 5.311619332786224e-06, "epoch": 0.764928, "percentage": 76.5, "elapsed_time": "10:58:56", "remaining_time": "3:22:26"}
2989
+ {"current_steps": 2989, "total_steps": 3906, "loss": 1.3149, "learning_rate": 5.300593726712497e-06, "epoch": 0.765184, "percentage": 76.52, "elapsed_time": "10:59:09", "remaining_time": "3:22:13"}
2990
+ {"current_steps": 2990, "total_steps": 3906, "loss": 1.3621, "learning_rate": 5.289577827432819e-06, "epoch": 0.76544, "percentage": 76.55, "elapsed_time": "10:59:23", "remaining_time": "3:22:00"}
2991
+ {"current_steps": 2991, "total_steps": 3906, "loss": 1.3005, "learning_rate": 5.278571642221584e-06, "epoch": 0.765696, "percentage": 76.57, "elapsed_time": "10:59:36", "remaining_time": "3:21:47"}
2992
+ {"current_steps": 2992, "total_steps": 3906, "loss": 1.2995, "learning_rate": 5.2675751783467445e-06, "epoch": 0.765952, "percentage": 76.6, "elapsed_time": "10:59:49", "remaining_time": "3:21:33"}
2993
+ {"current_steps": 2993, "total_steps": 3906, "loss": 1.3318, "learning_rate": 5.256588443069853e-06, "epoch": 0.766208, "percentage": 76.63, "elapsed_time": "11:00:02", "remaining_time": "3:21:20"}
2994
+ {"current_steps": 2994, "total_steps": 3906, "loss": 1.3032, "learning_rate": 5.245611443646028e-06, "epoch": 0.766464, "percentage": 76.65, "elapsed_time": "11:00:15", "remaining_time": "3:21:07"}
2995
+ {"current_steps": 2995, "total_steps": 3906, "loss": 1.3595, "learning_rate": 5.23464418732397e-06, "epoch": 0.76672, "percentage": 76.68, "elapsed_time": "11:00:28", "remaining_time": "3:20:54"}
2996
+ {"current_steps": 2996, "total_steps": 3906, "loss": 1.3228, "learning_rate": 5.223686681345926e-06, "epoch": 0.766976, "percentage": 76.7, "elapsed_time": "11:00:42", "remaining_time": "3:20:40"}
2997
+ {"current_steps": 2997, "total_steps": 3906, "loss": 1.3188, "learning_rate": 5.212738932947718e-06, "epoch": 0.767232, "percentage": 76.73, "elapsed_time": "11:00:55", "remaining_time": "3:20:27"}
2998
+ {"current_steps": 2998, "total_steps": 3906, "loss": 1.3328, "learning_rate": 5.2018009493587285e-06, "epoch": 0.767488, "percentage": 76.75, "elapsed_time": "11:01:08", "remaining_time": "3:20:14"}
2999
+ {"current_steps": 2999, "total_steps": 3906, "loss": 1.3365, "learning_rate": 5.1908727378018796e-06, "epoch": 0.767744, "percentage": 76.78, "elapsed_time": "11:01:21", "remaining_time": "3:20:01"}
3000
+ {"current_steps": 3000, "total_steps": 3906, "loss": 1.3356, "learning_rate": 5.179954305493651e-06, "epoch": 0.768, "percentage": 76.8, "elapsed_time": "11:01:35", "remaining_time": "3:19:47"}
3001
+ {"current_steps": 3001, "total_steps": 3906, "loss": 1.3285, "learning_rate": 5.169045659644061e-06, "epoch": 0.768256, "percentage": 76.83, "elapsed_time": "11:01:48", "remaining_time": "3:19:34"}
3002
+ {"current_steps": 3002, "total_steps": 3906, "loss": 1.2865, "learning_rate": 5.158146807456663e-06, "epoch": 0.768512, "percentage": 76.86, "elapsed_time": "11:02:01", "remaining_time": "3:19:21"}
3003
+ {"current_steps": 3003, "total_steps": 3906, "loss": 1.3799, "learning_rate": 5.147257756128538e-06, "epoch": 0.768768, "percentage": 76.88, "elapsed_time": "11:02:14", "remaining_time": "3:19:08"}
3004
+ {"current_steps": 3004, "total_steps": 3906, "loss": 1.315, "learning_rate": 5.136378512850304e-06, "epoch": 0.769024, "percentage": 76.91, "elapsed_time": "11:02:27", "remaining_time": "3:18:54"}
3005
+ {"current_steps": 3005, "total_steps": 3906, "loss": 1.3327, "learning_rate": 5.125509084806104e-06, "epoch": 0.76928, "percentage": 76.93, "elapsed_time": "11:02:40", "remaining_time": "3:18:41"}
3006
+ {"current_steps": 3006, "total_steps": 3906, "loss": 1.3448, "learning_rate": 5.114649479173592e-06, "epoch": 0.769536, "percentage": 76.96, "elapsed_time": "11:02:54", "remaining_time": "3:18:28"}
3007
+ {"current_steps": 3007, "total_steps": 3906, "loss": 1.336, "learning_rate": 5.1037997031239485e-06, "epoch": 0.769792, "percentage": 76.98, "elapsed_time": "11:03:07", "remaining_time": "3:18:15"}
3008
+ {"current_steps": 3008, "total_steps": 3906, "loss": 1.3295, "learning_rate": 5.092959763821836e-06, "epoch": 0.770048, "percentage": 77.01, "elapsed_time": "11:03:20", "remaining_time": "3:18:01"}
3009
+ {"current_steps": 3009, "total_steps": 3906, "loss": 1.3387, "learning_rate": 5.082129668425451e-06, "epoch": 0.770304, "percentage": 77.04, "elapsed_time": "11:03:33", "remaining_time": "3:17:48"}
3010
+ {"current_steps": 3010, "total_steps": 3906, "loss": 1.3161, "learning_rate": 5.071309424086472e-06, "epoch": 0.77056, "percentage": 77.06, "elapsed_time": "11:03:46", "remaining_time": "3:17:35"}
3011
+ {"current_steps": 3011, "total_steps": 3906, "loss": 1.3109, "learning_rate": 5.0604990379500795e-06, "epoch": 0.770816, "percentage": 77.09, "elapsed_time": "11:04:00", "remaining_time": "3:17:22"}
3012
+ {"current_steps": 3012, "total_steps": 3906, "loss": 1.3107, "learning_rate": 5.049698517154951e-06, "epoch": 0.771072, "percentage": 77.11, "elapsed_time": "11:04:13", "remaining_time": "3:17:08"}
3013
+ {"current_steps": 3013, "total_steps": 3906, "loss": 1.3066, "learning_rate": 5.038907868833225e-06, "epoch": 0.771328, "percentage": 77.14, "elapsed_time": "11:04:26", "remaining_time": "3:16:55"}
3014
+ {"current_steps": 3014, "total_steps": 3906, "loss": 1.3391, "learning_rate": 5.0281271001105495e-06, "epoch": 0.771584, "percentage": 77.16, "elapsed_time": "11:04:39", "remaining_time": "3:16:42"}
3015
+ {"current_steps": 3015, "total_steps": 3906, "loss": 1.369, "learning_rate": 5.017356218106022e-06, "epoch": 0.77184, "percentage": 77.19, "elapsed_time": "11:04:52", "remaining_time": "3:16:29"}
3016
+ {"current_steps": 3016, "total_steps": 3906, "loss": 1.2638, "learning_rate": 5.006595229932234e-06, "epoch": 0.772096, "percentage": 77.21, "elapsed_time": "11:05:05", "remaining_time": "3:16:15"}
3017
+ {"current_steps": 3017, "total_steps": 3906, "loss": 1.3633, "learning_rate": 4.99584414269523e-06, "epoch": 0.772352, "percentage": 77.24, "elapsed_time": "11:05:19", "remaining_time": "3:16:02"}
3018
+ {"current_steps": 3018, "total_steps": 3906, "loss": 1.35, "learning_rate": 4.985102963494524e-06, "epoch": 0.772608, "percentage": 77.27, "elapsed_time": "11:05:32", "remaining_time": "3:15:49"}
3019
+ {"current_steps": 3019, "total_steps": 3906, "loss": 1.3005, "learning_rate": 4.974371699423088e-06, "epoch": 0.772864, "percentage": 77.29, "elapsed_time": "11:05:45", "remaining_time": "3:15:36"}
3020
+ {"current_steps": 3020, "total_steps": 3906, "loss": 1.3372, "learning_rate": 4.9636503575673315e-06, "epoch": 0.77312, "percentage": 77.32, "elapsed_time": "11:05:58", "remaining_time": "3:15:22"}
3021
+ {"current_steps": 3021, "total_steps": 3906, "loss": 1.3266, "learning_rate": 4.952938945007127e-06, "epoch": 0.773376, "percentage": 77.34, "elapsed_time": "11:06:11", "remaining_time": "3:15:09"}
3022
+ {"current_steps": 3022, "total_steps": 3906, "loss": 1.3768, "learning_rate": 4.942237468815785e-06, "epoch": 0.773632, "percentage": 77.37, "elapsed_time": "11:06:25", "remaining_time": "3:14:56"}
3023
+ {"current_steps": 3023, "total_steps": 3906, "loss": 1.2683, "learning_rate": 4.931545936060058e-06, "epoch": 0.773888, "percentage": 77.39, "elapsed_time": "11:06:38", "remaining_time": "3:14:43"}
3024
+ {"current_steps": 3024, "total_steps": 3906, "loss": 1.3706, "learning_rate": 4.920864353800135e-06, "epoch": 0.774144, "percentage": 77.42, "elapsed_time": "11:06:51", "remaining_time": "3:14:29"}
3025
+ {"current_steps": 3025, "total_steps": 3906, "loss": 1.3788, "learning_rate": 4.91019272908962e-06, "epoch": 0.7744, "percentage": 77.44, "elapsed_time": "11:07:04", "remaining_time": "3:14:16"}
3026
+ {"current_steps": 3026, "total_steps": 3906, "loss": 1.3111, "learning_rate": 4.899531068975547e-06, "epoch": 0.774656, "percentage": 77.47, "elapsed_time": "11:07:17", "remaining_time": "3:14:03"}
3027
+ {"current_steps": 3027, "total_steps": 3906, "loss": 1.2693, "learning_rate": 4.888879380498377e-06, "epoch": 0.774912, "percentage": 77.5, "elapsed_time": "11:07:30", "remaining_time": "3:13:50"}
3028
+ {"current_steps": 3028, "total_steps": 3906, "loss": 1.3241, "learning_rate": 4.878237670691985e-06, "epoch": 0.775168, "percentage": 77.52, "elapsed_time": "11:07:44", "remaining_time": "3:13:36"}
3029
+ {"current_steps": 3029, "total_steps": 3906, "loss": 1.3518, "learning_rate": 4.867605946583653e-06, "epoch": 0.775424, "percentage": 77.55, "elapsed_time": "11:07:57", "remaining_time": "3:13:23"}
3030
+ {"current_steps": 3030, "total_steps": 3906, "loss": 1.3239, "learning_rate": 4.856984215194067e-06, "epoch": 0.77568, "percentage": 77.57, "elapsed_time": "11:08:10", "remaining_time": "3:13:10"}
3031
+ {"current_steps": 3031, "total_steps": 3906, "loss": 1.3706, "learning_rate": 4.846372483537327e-06, "epoch": 0.775936, "percentage": 77.6, "elapsed_time": "11:08:23", "remaining_time": "3:12:57"}
3032
+ {"current_steps": 3032, "total_steps": 3906, "loss": 1.2767, "learning_rate": 4.835770758620906e-06, "epoch": 0.776192, "percentage": 77.62, "elapsed_time": "11:08:36", "remaining_time": "3:12:44"}
3033
+ {"current_steps": 3033, "total_steps": 3906, "loss": 1.3344, "learning_rate": 4.8251790474456875e-06, "epoch": 0.776448, "percentage": 77.65, "elapsed_time": "11:08:49", "remaining_time": "3:12:30"}
3034
+ {"current_steps": 3034, "total_steps": 3906, "loss": 1.3104, "learning_rate": 4.814597357005939e-06, "epoch": 0.776704, "percentage": 77.68, "elapsed_time": "11:09:03", "remaining_time": "3:12:17"}
3035
+ {"current_steps": 3035, "total_steps": 3906, "loss": 1.3297, "learning_rate": 4.804025694289316e-06, "epoch": 0.77696, "percentage": 77.7, "elapsed_time": "11:09:16", "remaining_time": "3:12:04"}
3036
+ {"current_steps": 3036, "total_steps": 3906, "loss": 1.3167, "learning_rate": 4.793464066276831e-06, "epoch": 0.777216, "percentage": 77.73, "elapsed_time": "11:09:29", "remaining_time": "3:11:50"}
3037
+ {"current_steps": 3037, "total_steps": 3906, "loss": 1.3114, "learning_rate": 4.782912479942894e-06, "epoch": 0.777472, "percentage": 77.75, "elapsed_time": "11:09:42", "remaining_time": "3:11:37"}
3038
+ {"current_steps": 3038, "total_steps": 3906, "loss": 1.2958, "learning_rate": 4.7723709422552755e-06, "epoch": 0.777728, "percentage": 77.78, "elapsed_time": "11:09:55", "remaining_time": "3:11:24"}
3039
+ {"current_steps": 3039, "total_steps": 3906, "loss": 1.3696, "learning_rate": 4.761839460175104e-06, "epoch": 0.777984, "percentage": 77.8, "elapsed_time": "11:10:08", "remaining_time": "3:11:11"}
3040
+ {"current_steps": 3040, "total_steps": 3906, "loss": 1.3346, "learning_rate": 4.751318040656874e-06, "epoch": 0.77824, "percentage": 77.83, "elapsed_time": "11:10:21", "remaining_time": "3:10:57"}
3041
+ {"current_steps": 3041, "total_steps": 3906, "loss": 1.3353, "learning_rate": 4.740806690648438e-06, "epoch": 0.778496, "percentage": 77.85, "elapsed_time": "11:10:35", "remaining_time": "3:10:44"}
3042
+ {"current_steps": 3042, "total_steps": 3906, "loss": 1.3276, "learning_rate": 4.730305417090992e-06, "epoch": 0.778752, "percentage": 77.88, "elapsed_time": "11:10:48", "remaining_time": "3:10:31"}
3043
+ {"current_steps": 3043, "total_steps": 3906, "loss": 1.3491, "learning_rate": 4.719814226919084e-06, "epoch": 0.779008, "percentage": 77.91, "elapsed_time": "11:11:01", "remaining_time": "3:10:18"}
3044
+ {"current_steps": 3044, "total_steps": 3906, "loss": 1.2943, "learning_rate": 4.709333127060605e-06, "epoch": 0.779264, "percentage": 77.93, "elapsed_time": "11:11:14", "remaining_time": "3:10:04"}
3045
+ {"current_steps": 3045, "total_steps": 3906, "loss": 1.3687, "learning_rate": 4.698862124436767e-06, "epoch": 0.77952, "percentage": 77.96, "elapsed_time": "11:11:27", "remaining_time": "3:09:51"}
3046
+ {"current_steps": 3046, "total_steps": 3906, "loss": 1.3684, "learning_rate": 4.6884012259621316e-06, "epoch": 0.779776, "percentage": 77.98, "elapsed_time": "11:11:40", "remaining_time": "3:09:38"}
3047
+ {"current_steps": 3047, "total_steps": 3906, "loss": 1.3214, "learning_rate": 4.67795043854459e-06, "epoch": 0.780032, "percentage": 78.01, "elapsed_time": "11:11:53", "remaining_time": "3:09:25"}
3048
+ {"current_steps": 3048, "total_steps": 3906, "loss": 1.3809, "learning_rate": 4.667509769085334e-06, "epoch": 0.780288, "percentage": 78.03, "elapsed_time": "11:12:07", "remaining_time": "3:09:11"}
3049
+ {"current_steps": 3049, "total_steps": 3906, "loss": 1.3306, "learning_rate": 4.6570792244789e-06, "epoch": 0.780544, "percentage": 78.06, "elapsed_time": "11:12:20", "remaining_time": "3:08:58"}
3050
+ {"current_steps": 3050, "total_steps": 3906, "loss": 1.3347, "learning_rate": 4.646658811613127e-06, "epoch": 0.7808, "percentage": 78.08, "elapsed_time": "11:12:33", "remaining_time": "3:08:45"}
3051
+ {"current_steps": 3051, "total_steps": 3906, "loss": 1.3372, "learning_rate": 4.636248537369156e-06, "epoch": 0.781056, "percentage": 78.11, "elapsed_time": "11:12:46", "remaining_time": "3:08:32"}
3052
+ {"current_steps": 3052, "total_steps": 3906, "loss": 1.3214, "learning_rate": 4.625848408621447e-06, "epoch": 0.781312, "percentage": 78.14, "elapsed_time": "11:12:59", "remaining_time": "3:08:18"}
3053
+ {"current_steps": 3053, "total_steps": 3906, "loss": 1.3416, "learning_rate": 4.615458432237751e-06, "epoch": 0.781568, "percentage": 78.16, "elapsed_time": "11:13:13", "remaining_time": "3:08:05"}
3054
+ {"current_steps": 3054, "total_steps": 3906, "loss": 1.3802, "learning_rate": 4.6050786150791216e-06, "epoch": 0.781824, "percentage": 78.19, "elapsed_time": "11:13:26", "remaining_time": "3:07:52"}
3055
+ {"current_steps": 3055, "total_steps": 3906, "loss": 1.3275, "learning_rate": 4.594708963999897e-06, "epoch": 0.78208, "percentage": 78.21, "elapsed_time": "11:13:39", "remaining_time": "3:07:39"}
3056
+ {"current_steps": 3056, "total_steps": 3906, "loss": 1.33, "learning_rate": 4.58434948584771e-06, "epoch": 0.782336, "percentage": 78.24, "elapsed_time": "11:13:52", "remaining_time": "3:07:25"}
3057
+ {"current_steps": 3057, "total_steps": 3906, "loss": 1.3064, "learning_rate": 4.574000187463466e-06, "epoch": 0.782592, "percentage": 78.26, "elapsed_time": "11:14:05", "remaining_time": "3:07:12"}
3058
+ {"current_steps": 3058, "total_steps": 3906, "loss": 1.3003, "learning_rate": 4.563661075681356e-06, "epoch": 0.782848, "percentage": 78.29, "elapsed_time": "11:14:19", "remaining_time": "3:06:59"}
3059
+ {"current_steps": 3059, "total_steps": 3906, "loss": 1.3272, "learning_rate": 4.553332157328836e-06, "epoch": 0.783104, "percentage": 78.32, "elapsed_time": "11:14:32", "remaining_time": "3:06:46"}
3060
+ {"current_steps": 3060, "total_steps": 3906, "loss": 1.3378, "learning_rate": 4.54301343922664e-06, "epoch": 0.78336, "percentage": 78.34, "elapsed_time": "11:14:45", "remaining_time": "3:06:33"}
3061
+ {"current_steps": 3061, "total_steps": 3906, "loss": 1.3532, "learning_rate": 4.532704928188763e-06, "epoch": 0.783616, "percentage": 78.37, "elapsed_time": "11:14:58", "remaining_time": "3:06:19"}
3062
+ {"current_steps": 3062, "total_steps": 3906, "loss": 1.3937, "learning_rate": 4.522406631022464e-06, "epoch": 0.783872, "percentage": 78.39, "elapsed_time": "11:15:11", "remaining_time": "3:06:06"}
3063
+ {"current_steps": 3063, "total_steps": 3906, "loss": 1.3025, "learning_rate": 4.512118554528242e-06, "epoch": 0.784128, "percentage": 78.42, "elapsed_time": "11:15:24", "remaining_time": "3:05:53"}
3064
+ {"current_steps": 3064, "total_steps": 3906, "loss": 1.3244, "learning_rate": 4.50184070549986e-06, "epoch": 0.784384, "percentage": 78.44, "elapsed_time": "11:15:38", "remaining_time": "3:05:40"}
3065
+ {"current_steps": 3065, "total_steps": 3906, "loss": 1.2956, "learning_rate": 4.491573090724328e-06, "epoch": 0.78464, "percentage": 78.47, "elapsed_time": "11:15:51", "remaining_time": "3:05:26"}
3066
+ {"current_steps": 3066, "total_steps": 3906, "loss": 1.3312, "learning_rate": 4.481315716981891e-06, "epoch": 0.784896, "percentage": 78.49, "elapsed_time": "11:16:04", "remaining_time": "3:05:13"}
3067
+ {"current_steps": 3067, "total_steps": 3906, "loss": 1.3655, "learning_rate": 4.4710685910460375e-06, "epoch": 0.785152, "percentage": 78.52, "elapsed_time": "11:16:17", "remaining_time": "3:05:00"}
3068
+ {"current_steps": 3068, "total_steps": 3906, "loss": 1.2744, "learning_rate": 4.46083171968349e-06, "epoch": 0.785408, "percentage": 78.55, "elapsed_time": "11:16:30", "remaining_time": "3:04:47"}
3069
+ {"current_steps": 3069, "total_steps": 3906, "loss": 1.317, "learning_rate": 4.450605109654182e-06, "epoch": 0.785664, "percentage": 78.57, "elapsed_time": "11:16:44", "remaining_time": "3:04:33"}
3070
+ {"current_steps": 3070, "total_steps": 3906, "loss": 1.3388, "learning_rate": 4.440388767711299e-06, "epoch": 0.78592, "percentage": 78.6, "elapsed_time": "11:16:57", "remaining_time": "3:04:20"}
3071
+ {"current_steps": 3071, "total_steps": 3906, "loss": 1.314, "learning_rate": 4.430182700601218e-06, "epoch": 0.786176, "percentage": 78.62, "elapsed_time": "11:17:10", "remaining_time": "3:04:07"}
3072
+ {"current_steps": 3072, "total_steps": 3906, "loss": 1.3274, "learning_rate": 4.419986915063548e-06, "epoch": 0.786432, "percentage": 78.65, "elapsed_time": "11:17:23", "remaining_time": "3:03:54"}
3073
+ {"current_steps": 3073, "total_steps": 3906, "loss": 1.3432, "learning_rate": 4.409801417831105e-06, "epoch": 0.786688, "percentage": 78.67, "elapsed_time": "11:17:37", "remaining_time": "3:03:40"}
3074
+ {"current_steps": 3074, "total_steps": 3906, "loss": 1.3382, "learning_rate": 4.399626215629917e-06, "epoch": 0.786944, "percentage": 78.7, "elapsed_time": "11:17:50", "remaining_time": "3:03:27"}
3075
+ {"current_steps": 3075, "total_steps": 3906, "loss": 1.3515, "learning_rate": 4.389461315179198e-06, "epoch": 0.7872, "percentage": 78.73, "elapsed_time": "11:18:03", "remaining_time": "3:03:14"}
3076
+ {"current_steps": 3076, "total_steps": 3906, "loss": 1.3569, "learning_rate": 4.379306723191372e-06, "epoch": 0.787456, "percentage": 78.75, "elapsed_time": "11:18:16", "remaining_time": "3:03:01"}
3077
+ {"current_steps": 3077, "total_steps": 3906, "loss": 1.3031, "learning_rate": 4.369162446372052e-06, "epoch": 0.787712, "percentage": 78.78, "elapsed_time": "11:18:29", "remaining_time": "3:02:47"}
3078
+ {"current_steps": 3078, "total_steps": 3906, "loss": 1.3032, "learning_rate": 4.359028491420039e-06, "epoch": 0.787968, "percentage": 78.8, "elapsed_time": "11:18:42", "remaining_time": "3:02:34"}
3079
+ {"current_steps": 3079, "total_steps": 3906, "loss": 1.3131, "learning_rate": 4.348904865027321e-06, "epoch": 0.788224, "percentage": 78.83, "elapsed_time": "11:18:55", "remaining_time": "3:02:21"}
3080
+ {"current_steps": 3080, "total_steps": 3906, "loss": 1.3094, "learning_rate": 4.3387915738790666e-06, "epoch": 0.78848, "percentage": 78.85, "elapsed_time": "11:19:09", "remaining_time": "3:02:08"}
3081
+ {"current_steps": 3081, "total_steps": 3906, "loss": 1.3376, "learning_rate": 4.3286886246536096e-06, "epoch": 0.788736, "percentage": 78.88, "elapsed_time": "11:19:22", "remaining_time": "3:01:54"}
3082
+ {"current_steps": 3082, "total_steps": 3906, "loss": 1.2953, "learning_rate": 4.318596024022457e-06, "epoch": 0.788992, "percentage": 78.9, "elapsed_time": "11:19:35", "remaining_time": "3:01:41"}
3083
+ {"current_steps": 3083, "total_steps": 3906, "loss": 1.3337, "learning_rate": 4.308513778650292e-06, "epoch": 0.789248, "percentage": 78.93, "elapsed_time": "11:19:48", "remaining_time": "3:01:28"}
3084
+ {"current_steps": 3084, "total_steps": 3906, "loss": 1.3027, "learning_rate": 4.298441895194952e-06, "epoch": 0.789504, "percentage": 78.96, "elapsed_time": "11:20:01", "remaining_time": "3:01:15"}
3085
+ {"current_steps": 3085, "total_steps": 3906, "loss": 1.2952, "learning_rate": 4.288380380307433e-06, "epoch": 0.78976, "percentage": 78.98, "elapsed_time": "11:20:15", "remaining_time": "3:01:01"}
3086
+ {"current_steps": 3086, "total_steps": 3906, "loss": 1.2943, "learning_rate": 4.278329240631891e-06, "epoch": 0.790016, "percentage": 79.01, "elapsed_time": "11:20:28", "remaining_time": "3:00:48"}
3087
+ {"current_steps": 3087, "total_steps": 3906, "loss": 1.3134, "learning_rate": 4.268288482805614e-06, "epoch": 0.790272, "percentage": 79.03, "elapsed_time": "11:20:41", "remaining_time": "3:00:35"}
3088
+ {"current_steps": 3088, "total_steps": 3906, "loss": 1.3464, "learning_rate": 4.2582581134590465e-06, "epoch": 0.790528, "percentage": 79.06, "elapsed_time": "11:20:54", "remaining_time": "3:00:22"}
3089
+ {"current_steps": 3089, "total_steps": 3906, "loss": 1.3394, "learning_rate": 4.248238139215775e-06, "epoch": 0.790784, "percentage": 79.08, "elapsed_time": "11:21:07", "remaining_time": "3:00:08"}
3090
+ {"current_steps": 3090, "total_steps": 3906, "loss": 1.3004, "learning_rate": 4.238228566692517e-06, "epoch": 0.79104, "percentage": 79.11, "elapsed_time": "11:21:20", "remaining_time": "2:59:55"}
3091
+ {"current_steps": 3091, "total_steps": 3906, "loss": 1.3474, "learning_rate": 4.2282294024991245e-06, "epoch": 0.791296, "percentage": 79.13, "elapsed_time": "11:21:34", "remaining_time": "2:59:42"}
3092
+ {"current_steps": 3092, "total_steps": 3906, "loss": 1.3368, "learning_rate": 4.218240653238566e-06, "epoch": 0.791552, "percentage": 79.16, "elapsed_time": "11:21:47", "remaining_time": "2:59:29"}
3093
+ {"current_steps": 3093, "total_steps": 3906, "loss": 1.3325, "learning_rate": 4.208262325506946e-06, "epoch": 0.791808, "percentage": 79.19, "elapsed_time": "11:22:00", "remaining_time": "2:59:16"}
3094
+ {"current_steps": 3094, "total_steps": 3906, "loss": 1.3339, "learning_rate": 4.198294425893476e-06, "epoch": 0.792064, "percentage": 79.21, "elapsed_time": "11:22:13", "remaining_time": "2:59:02"}
3095
+ {"current_steps": 3095, "total_steps": 3906, "loss": 1.3136, "learning_rate": 4.18833696098049e-06, "epoch": 0.79232, "percentage": 79.24, "elapsed_time": "11:22:27", "remaining_time": "2:58:49"}
3096
+ {"current_steps": 3096, "total_steps": 3906, "loss": 1.3224, "learning_rate": 4.178389937343425e-06, "epoch": 0.792576, "percentage": 79.26, "elapsed_time": "11:22:40", "remaining_time": "2:58:36"}
3097
+ {"current_steps": 3097, "total_steps": 3906, "loss": 1.3099, "learning_rate": 4.16845336155083e-06, "epoch": 0.792832, "percentage": 79.29, "elapsed_time": "11:22:53", "remaining_time": "2:58:23"}
3098
+ {"current_steps": 3098, "total_steps": 3906, "loss": 1.3394, "learning_rate": 4.158527240164347e-06, "epoch": 0.793088, "percentage": 79.31, "elapsed_time": "11:23:06", "remaining_time": "2:58:09"}
3099
+ {"current_steps": 3099, "total_steps": 3906, "loss": 1.3744, "learning_rate": 4.148611579738726e-06, "epoch": 0.793344, "percentage": 79.34, "elapsed_time": "11:23:19", "remaining_time": "2:57:56"}
3100
+ {"current_steps": 3100, "total_steps": 3906, "loss": 1.3546, "learning_rate": 4.138706386821789e-06, "epoch": 0.7936, "percentage": 79.37, "elapsed_time": "11:23:32", "remaining_time": "2:57:43"}
3101
+ {"current_steps": 3101, "total_steps": 3906, "loss": 1.3114, "learning_rate": 4.128811667954464e-06, "epoch": 0.793856, "percentage": 79.39, "elapsed_time": "11:23:46", "remaining_time": "2:57:30"}
3102
+ {"current_steps": 3102, "total_steps": 3906, "loss": 1.3422, "learning_rate": 4.118927429670756e-06, "epoch": 0.794112, "percentage": 79.42, "elapsed_time": "11:23:59", "remaining_time": "2:57:16"}
3103
+ {"current_steps": 3103, "total_steps": 3906, "loss": 1.3146, "learning_rate": 4.109053678497754e-06, "epoch": 0.794368, "percentage": 79.44, "elapsed_time": "11:24:12", "remaining_time": "2:57:03"}
3104
+ {"current_steps": 3104, "total_steps": 3906, "loss": 1.3379, "learning_rate": 4.099190420955607e-06, "epoch": 0.794624, "percentage": 79.47, "elapsed_time": "11:24:25", "remaining_time": "2:56:50"}
3105
+ {"current_steps": 3105, "total_steps": 3906, "loss": 1.3019, "learning_rate": 4.089337663557558e-06, "epoch": 0.79488, "percentage": 79.49, "elapsed_time": "11:24:38", "remaining_time": "2:56:37"}
3106
+ {"current_steps": 3106, "total_steps": 3906, "loss": 1.3586, "learning_rate": 4.079495412809886e-06, "epoch": 0.795136, "percentage": 79.52, "elapsed_time": "11:24:52", "remaining_time": "2:56:23"}
3107
+ {"current_steps": 3107, "total_steps": 3906, "loss": 1.3327, "learning_rate": 4.069663675211961e-06, "epoch": 0.795392, "percentage": 79.54, "elapsed_time": "11:25:05", "remaining_time": "2:56:10"}
3108
+ {"current_steps": 3108, "total_steps": 3906, "loss": 1.3036, "learning_rate": 4.059842457256193e-06, "epoch": 0.795648, "percentage": 79.57, "elapsed_time": "11:25:18", "remaining_time": "2:55:57"}
3109
+ {"current_steps": 3109, "total_steps": 3906, "loss": 1.3418, "learning_rate": 4.050031765428055e-06, "epoch": 0.795904, "percentage": 79.6, "elapsed_time": "11:25:31", "remaining_time": "2:55:44"}
3110
+ {"current_steps": 3110, "total_steps": 3906, "loss": 1.3159, "learning_rate": 4.040231606206062e-06, "epoch": 0.79616, "percentage": 79.62, "elapsed_time": "11:25:44", "remaining_time": "2:55:30"}
3111
+ {"current_steps": 3111, "total_steps": 3906, "loss": 1.347, "learning_rate": 4.0304419860617835e-06, "epoch": 0.796416, "percentage": 79.65, "elapsed_time": "11:25:57", "remaining_time": "2:55:17"}
3112
+ {"current_steps": 3112, "total_steps": 3906, "loss": 1.3349, "learning_rate": 4.020662911459812e-06, "epoch": 0.796672, "percentage": 79.67, "elapsed_time": "11:26:11", "remaining_time": "2:55:04"}
3113
+ {"current_steps": 3113, "total_steps": 3906, "loss": 1.3613, "learning_rate": 4.010894388857789e-06, "epoch": 0.796928, "percentage": 79.7, "elapsed_time": "11:26:24", "remaining_time": "2:54:51"}
3114
+ {"current_steps": 3114, "total_steps": 3906, "loss": 1.2885, "learning_rate": 4.0011364247063955e-06, "epoch": 0.797184, "percentage": 79.72, "elapsed_time": "11:26:37", "remaining_time": "2:54:37"}
3115
+ {"current_steps": 3115, "total_steps": 3906, "loss": 1.3016, "learning_rate": 3.991389025449317e-06, "epoch": 0.79744, "percentage": 79.75, "elapsed_time": "11:26:50", "remaining_time": "2:54:24"}
3116
+ {"current_steps": 3116, "total_steps": 3906, "loss": 1.3253, "learning_rate": 3.9816521975232805e-06, "epoch": 0.797696, "percentage": 79.77, "elapsed_time": "11:27:03", "remaining_time": "2:54:11"}
3117
+ {"current_steps": 3117, "total_steps": 3906, "loss": 1.371, "learning_rate": 3.971925947358035e-06, "epoch": 0.797952, "percentage": 79.8, "elapsed_time": "11:27:17", "remaining_time": "2:53:58"}
3118
+ {"current_steps": 3118, "total_steps": 3906, "loss": 1.3222, "learning_rate": 3.962210281376326e-06, "epoch": 0.798208, "percentage": 79.83, "elapsed_time": "11:27:30", "remaining_time": "2:53:44"}
3119
+ {"current_steps": 3119, "total_steps": 3906, "loss": 1.301, "learning_rate": 3.952505205993926e-06, "epoch": 0.798464, "percentage": 79.85, "elapsed_time": "11:27:43", "remaining_time": "2:53:31"}
3120
+ {"current_steps": 3120, "total_steps": 3906, "loss": 1.3053, "learning_rate": 3.942810727619608e-06, "epoch": 0.79872, "percentage": 79.88, "elapsed_time": "11:27:56", "remaining_time": "2:53:18"}
3121
+ {"current_steps": 3121, "total_steps": 3906, "loss": 1.3536, "learning_rate": 3.933126852655147e-06, "epoch": 0.798976, "percentage": 79.9, "elapsed_time": "11:28:09", "remaining_time": "2:53:05"}
3122
+ {"current_steps": 3122, "total_steps": 3906, "loss": 1.3106, "learning_rate": 3.923453587495319e-06, "epoch": 0.799232, "percentage": 79.93, "elapsed_time": "11:28:22", "remaining_time": "2:52:51"}
3123
+ {"current_steps": 3123, "total_steps": 3906, "loss": 1.3593, "learning_rate": 3.913790938527897e-06, "epoch": 0.799488, "percentage": 79.95, "elapsed_time": "11:28:35", "remaining_time": "2:52:38"}
3124
+ {"current_steps": 3124, "total_steps": 3906, "loss": 1.325, "learning_rate": 3.9041389121336255e-06, "epoch": 0.799744, "percentage": 79.98, "elapsed_time": "11:28:49", "remaining_time": "2:52:25"}
3125
+ {"current_steps": 3125, "total_steps": 3906, "loss": 1.3634, "learning_rate": 3.894497514686255e-06, "epoch": 0.8, "percentage": 80.01, "elapsed_time": "11:29:02", "remaining_time": "2:52:12"}
3126
+ {"current_steps": 3126, "total_steps": 3906, "loss": 1.3083, "learning_rate": 3.8848667525525115e-06, "epoch": 0.800256, "percentage": 80.03, "elapsed_time": "11:29:15", "remaining_time": "2:51:59"}
3127
+ {"current_steps": 3127, "total_steps": 3906, "loss": 1.3372, "learning_rate": 3.875246632092089e-06, "epoch": 0.800512, "percentage": 80.06, "elapsed_time": "11:29:28", "remaining_time": "2:51:45"}
3128
+ {"current_steps": 3128, "total_steps": 3906, "loss": 1.3265, "learning_rate": 3.865637159657662e-06, "epoch": 0.800768, "percentage": 80.08, "elapsed_time": "11:29:41", "remaining_time": "2:51:32"}
3129
+ {"current_steps": 3129, "total_steps": 3906, "loss": 1.3534, "learning_rate": 3.856038341594883e-06, "epoch": 0.801024, "percentage": 80.11, "elapsed_time": "11:29:55", "remaining_time": "2:51:19"}
3130
+ {"current_steps": 3130, "total_steps": 3906, "loss": 1.3045, "learning_rate": 3.846450184242343e-06, "epoch": 0.80128, "percentage": 80.13, "elapsed_time": "11:30:08", "remaining_time": "2:51:06"}
3131
+ {"current_steps": 3131, "total_steps": 3906, "loss": 1.359, "learning_rate": 3.836872693931615e-06, "epoch": 0.801536, "percentage": 80.16, "elapsed_time": "11:30:21", "remaining_time": "2:50:52"}
3132
+ {"current_steps": 3132, "total_steps": 3906, "loss": 1.3314, "learning_rate": 3.827305876987224e-06, "epoch": 0.801792, "percentage": 80.18, "elapsed_time": "11:30:34", "remaining_time": "2:50:39"}
3133
+ {"current_steps": 3133, "total_steps": 3906, "loss": 1.371, "learning_rate": 3.817749739726642e-06, "epoch": 0.802048, "percentage": 80.21, "elapsed_time": "11:30:47", "remaining_time": "2:50:26"}
3134
+ {"current_steps": 3134, "total_steps": 3906, "loss": 1.3496, "learning_rate": 3.808204288460289e-06, "epoch": 0.802304, "percentage": 80.24, "elapsed_time": "11:31:01", "remaining_time": "2:50:13"}
3135
+ {"current_steps": 3135, "total_steps": 3906, "loss": 1.2893, "learning_rate": 3.798669529491541e-06, "epoch": 0.80256, "percentage": 80.26, "elapsed_time": "11:31:14", "remaining_time": "2:49:59"}
3136
+ {"current_steps": 3136, "total_steps": 3906, "loss": 1.3251, "learning_rate": 3.7891454691166885e-06, "epoch": 0.802816, "percentage": 80.29, "elapsed_time": "11:31:27", "remaining_time": "2:49:46"}
3137
+ {"current_steps": 3137, "total_steps": 3906, "loss": 1.3355, "learning_rate": 3.7796321136249825e-06, "epoch": 0.803072, "percentage": 80.31, "elapsed_time": "11:31:40", "remaining_time": "2:49:33"}
3138
+ {"current_steps": 3138, "total_steps": 3906, "loss": 1.3245, "learning_rate": 3.7701294692985844e-06, "epoch": 0.803328, "percentage": 80.34, "elapsed_time": "11:31:53", "remaining_time": "2:49:20"}
3139
+ {"current_steps": 3139, "total_steps": 3906, "loss": 1.3199, "learning_rate": 3.7606375424125953e-06, "epoch": 0.803584, "percentage": 80.36, "elapsed_time": "11:32:06", "remaining_time": "2:49:06"}
3140
+ {"current_steps": 3140, "total_steps": 3906, "loss": 1.3081, "learning_rate": 3.751156339235038e-06, "epoch": 0.80384, "percentage": 80.39, "elapsed_time": "11:32:20", "remaining_time": "2:48:53"}
3141
+ {"current_steps": 3141, "total_steps": 3906, "loss": 1.2938, "learning_rate": 3.7416858660268563e-06, "epoch": 0.804096, "percentage": 80.41, "elapsed_time": "11:32:33", "remaining_time": "2:48:40"}
3142
+ {"current_steps": 3142, "total_steps": 3906, "loss": 1.3282, "learning_rate": 3.7322261290418915e-06, "epoch": 0.804352, "percentage": 80.44, "elapsed_time": "11:32:46", "remaining_time": "2:48:27"}
3143
+ {"current_steps": 3143, "total_steps": 3906, "loss": 1.3362, "learning_rate": 3.722777134526914e-06, "epoch": 0.804608, "percentage": 80.47, "elapsed_time": "11:32:59", "remaining_time": "2:48:13"}
3144
+ {"current_steps": 3144, "total_steps": 3906, "loss": 1.3034, "learning_rate": 3.713338888721594e-06, "epoch": 0.804864, "percentage": 80.49, "elapsed_time": "11:33:12", "remaining_time": "2:48:00"}
3145
+ {"current_steps": 3145, "total_steps": 3906, "loss": 1.3285, "learning_rate": 3.7039113978585017e-06, "epoch": 0.80512, "percentage": 80.52, "elapsed_time": "11:33:25", "remaining_time": "2:47:47"}
3146
+ {"current_steps": 3146, "total_steps": 3906, "loss": 1.3393, "learning_rate": 3.694494668163109e-06, "epoch": 0.805376, "percentage": 80.54, "elapsed_time": "11:33:39", "remaining_time": "2:47:34"}
3147
+ {"current_steps": 3147, "total_steps": 3906, "loss": 1.3023, "learning_rate": 3.685088705853783e-06, "epoch": 0.805632, "percentage": 80.57, "elapsed_time": "11:33:52", "remaining_time": "2:47:20"}
3148
+ {"current_steps": 3148, "total_steps": 3906, "loss": 1.3135, "learning_rate": 3.6756935171417695e-06, "epoch": 0.805888, "percentage": 80.59, "elapsed_time": "11:34:05", "remaining_time": "2:47:07"}
3149
+ {"current_steps": 3149, "total_steps": 3906, "loss": 1.3352, "learning_rate": 3.6663091082312183e-06, "epoch": 0.806144, "percentage": 80.62, "elapsed_time": "11:34:18", "remaining_time": "2:46:54"}
3150
+ {"current_steps": 3150, "total_steps": 3906, "loss": 1.3084, "learning_rate": 3.6569354853191353e-06, "epoch": 0.8064, "percentage": 80.65, "elapsed_time": "11:34:31", "remaining_time": "2:46:41"}
3151
+ {"current_steps": 3151, "total_steps": 3906, "loss": 1.3489, "learning_rate": 3.6475726545954283e-06, "epoch": 0.806656, "percentage": 80.67, "elapsed_time": "11:34:44", "remaining_time": "2:46:27"}
3152
+ {"current_steps": 3152, "total_steps": 3906, "loss": 1.305, "learning_rate": 3.6382206222428674e-06, "epoch": 0.806912, "percentage": 80.7, "elapsed_time": "11:34:57", "remaining_time": "2:46:14"}
3153
+ {"current_steps": 3153, "total_steps": 3906, "loss": 1.3129, "learning_rate": 3.628879394437095e-06, "epoch": 0.807168, "percentage": 80.72, "elapsed_time": "11:35:11", "remaining_time": "2:46:01"}
3154
+ {"current_steps": 3154, "total_steps": 3906, "loss": 1.2985, "learning_rate": 3.6195489773466117e-06, "epoch": 0.807424, "percentage": 80.75, "elapsed_time": "11:35:24", "remaining_time": "2:45:48"}
3155
+ {"current_steps": 3155, "total_steps": 3906, "loss": 1.3109, "learning_rate": 3.610229377132788e-06, "epoch": 0.80768, "percentage": 80.77, "elapsed_time": "11:35:37", "remaining_time": "2:45:34"}
3156
+ {"current_steps": 3156, "total_steps": 3906, "loss": 1.2635, "learning_rate": 3.6009205999498488e-06, "epoch": 0.807936, "percentage": 80.8, "elapsed_time": "11:35:50", "remaining_time": "2:45:21"}
3157
+ {"current_steps": 3157, "total_steps": 3906, "loss": 1.3471, "learning_rate": 3.5916226519448684e-06, "epoch": 0.808192, "percentage": 80.82, "elapsed_time": "11:36:03", "remaining_time": "2:45:08"}
3158
+ {"current_steps": 3158, "total_steps": 3906, "loss": 1.3014, "learning_rate": 3.5823355392577795e-06, "epoch": 0.808448, "percentage": 80.85, "elapsed_time": "11:36:17", "remaining_time": "2:44:55"}
3159
+ {"current_steps": 3159, "total_steps": 3906, "loss": 1.2739, "learning_rate": 3.5730592680213437e-06, "epoch": 0.808704, "percentage": 80.88, "elapsed_time": "11:36:30", "remaining_time": "2:44:41"}
3160
+ {"current_steps": 3160, "total_steps": 3906, "loss": 1.3088, "learning_rate": 3.563793844361183e-06, "epoch": 0.80896, "percentage": 80.9, "elapsed_time": "11:36:43", "remaining_time": "2:44:28"}
3161
+ {"current_steps": 3161, "total_steps": 3906, "loss": 1.3276, "learning_rate": 3.554539274395734e-06, "epoch": 0.809216, "percentage": 80.93, "elapsed_time": "11:36:56", "remaining_time": "2:44:15"}
3162
+ {"current_steps": 3162, "total_steps": 3906, "loss": 1.2674, "learning_rate": 3.5452955642362817e-06, "epoch": 0.809472, "percentage": 80.95, "elapsed_time": "11:37:09", "remaining_time": "2:44:02"}
3163
+ {"current_steps": 3163, "total_steps": 3906, "loss": 1.2571, "learning_rate": 3.536062719986939e-06, "epoch": 0.809728, "percentage": 80.98, "elapsed_time": "11:37:22", "remaining_time": "2:43:49"}
3164
+ {"current_steps": 3164, "total_steps": 3906, "loss": 1.3479, "learning_rate": 3.5268407477446397e-06, "epoch": 0.809984, "percentage": 81.0, "elapsed_time": "11:37:35", "remaining_time": "2:43:35"}
3165
+ {"current_steps": 3165, "total_steps": 3906, "loss": 1.3302, "learning_rate": 3.5176296535991393e-06, "epoch": 0.81024, "percentage": 81.03, "elapsed_time": "11:37:49", "remaining_time": "2:43:22"}
3166
+ {"current_steps": 3166, "total_steps": 3906, "loss": 1.2728, "learning_rate": 3.508429443633012e-06, "epoch": 0.810496, "percentage": 81.05, "elapsed_time": "11:38:02", "remaining_time": "2:43:09"}
3167
+ {"current_steps": 3167, "total_steps": 3906, "loss": 1.3426, "learning_rate": 3.4992401239216344e-06, "epoch": 0.810752, "percentage": 81.08, "elapsed_time": "11:38:15", "remaining_time": "2:42:56"}
3168
+ {"current_steps": 3168, "total_steps": 3906, "loss": 1.3078, "learning_rate": 3.490061700533205e-06, "epoch": 0.811008, "percentage": 81.11, "elapsed_time": "11:38:28", "remaining_time": "2:42:42"}
3169
+ {"current_steps": 3169, "total_steps": 3906, "loss": 1.321, "learning_rate": 3.48089417952872e-06, "epoch": 0.811264, "percentage": 81.13, "elapsed_time": "11:38:42", "remaining_time": "2:42:29"}
3170
+ {"current_steps": 3170, "total_steps": 3906, "loss": 1.3228, "learning_rate": 3.4717375669619836e-06, "epoch": 0.81152, "percentage": 81.16, "elapsed_time": "11:38:55", "remaining_time": "2:42:16"}
3171
+ {"current_steps": 3171, "total_steps": 3906, "loss": 1.3118, "learning_rate": 3.462591868879579e-06, "epoch": 0.811776, "percentage": 81.18, "elapsed_time": "11:39:08", "remaining_time": "2:42:03"}
3172
+ {"current_steps": 3172, "total_steps": 3906, "loss": 1.3662, "learning_rate": 3.4534570913209064e-06, "epoch": 0.812032, "percentage": 81.21, "elapsed_time": "11:39:21", "remaining_time": "2:41:49"}
3173
+ {"current_steps": 3173, "total_steps": 3906, "loss": 1.3331, "learning_rate": 3.4443332403181274e-06, "epoch": 0.812288, "percentage": 81.23, "elapsed_time": "11:39:34", "remaining_time": "2:41:36"}
3174
+ {"current_steps": 3174, "total_steps": 3906, "loss": 1.3717, "learning_rate": 3.435220321896211e-06, "epoch": 0.812544, "percentage": 81.26, "elapsed_time": "11:39:47", "remaining_time": "2:41:23"}
3175
+ {"current_steps": 3175, "total_steps": 3906, "loss": 1.3518, "learning_rate": 3.4261183420728973e-06, "epoch": 0.8128, "percentage": 81.29, "elapsed_time": "11:40:01", "remaining_time": "2:41:10"}
3176
+ {"current_steps": 3176, "total_steps": 3906, "loss": 1.3101, "learning_rate": 3.4170273068587044e-06, "epoch": 0.813056, "percentage": 81.31, "elapsed_time": "11:40:14", "remaining_time": "2:40:56"}
3177
+ {"current_steps": 3177, "total_steps": 3906, "loss": 1.3775, "learning_rate": 3.407947222256922e-06, "epoch": 0.813312, "percentage": 81.34, "elapsed_time": "11:40:27", "remaining_time": "2:40:43"}
3178
+ {"current_steps": 3178, "total_steps": 3906, "loss": 1.3331, "learning_rate": 3.398878094263616e-06, "epoch": 0.813568, "percentage": 81.36, "elapsed_time": "11:40:40", "remaining_time": "2:40:30"}
3179
+ {"current_steps": 3179, "total_steps": 3906, "loss": 1.3433, "learning_rate": 3.3898199288675972e-06, "epoch": 0.813824, "percentage": 81.39, "elapsed_time": "11:40:53", "remaining_time": "2:40:17"}
3180
+ {"current_steps": 3180, "total_steps": 3906, "loss": 1.3076, "learning_rate": 3.380772732050459e-06, "epoch": 0.81408, "percentage": 81.41, "elapsed_time": "11:41:07", "remaining_time": "2:40:03"}
3181
+ {"current_steps": 3181, "total_steps": 3906, "loss": 1.3289, "learning_rate": 3.371736509786547e-06, "epoch": 0.814336, "percentage": 81.44, "elapsed_time": "11:41:20", "remaining_time": "2:39:50"}
3182
+ {"current_steps": 3182, "total_steps": 3906, "loss": 1.3547, "learning_rate": 3.362711268042944e-06, "epoch": 0.814592, "percentage": 81.46, "elapsed_time": "11:41:33", "remaining_time": "2:39:37"}
3183
+ {"current_steps": 3183, "total_steps": 3906, "loss": 1.3021, "learning_rate": 3.353697012779502e-06, "epoch": 0.814848, "percentage": 81.49, "elapsed_time": "11:41:46", "remaining_time": "2:39:24"}
3184
+ {"current_steps": 3184, "total_steps": 3906, "loss": 1.3237, "learning_rate": 3.344693749948813e-06, "epoch": 0.815104, "percentage": 81.52, "elapsed_time": "11:41:59", "remaining_time": "2:39:11"}
3185
+ {"current_steps": 3185, "total_steps": 3906, "loss": 1.3507, "learning_rate": 3.335701485496197e-06, "epoch": 0.81536, "percentage": 81.54, "elapsed_time": "11:42:12", "remaining_time": "2:38:57"}
3186
+ {"current_steps": 3186, "total_steps": 3906, "loss": 1.3272, "learning_rate": 3.326720225359723e-06, "epoch": 0.815616, "percentage": 81.57, "elapsed_time": "11:42:26", "remaining_time": "2:38:44"}
3187
+ {"current_steps": 3187, "total_steps": 3906, "loss": 1.2738, "learning_rate": 3.317749975470197e-06, "epoch": 0.815872, "percentage": 81.59, "elapsed_time": "11:42:39", "remaining_time": "2:38:31"}
3188
+ {"current_steps": 3188, "total_steps": 3906, "loss": 1.3588, "learning_rate": 3.3087907417511443e-06, "epoch": 0.816128, "percentage": 81.62, "elapsed_time": "11:42:52", "remaining_time": "2:38:18"}
3189
+ {"current_steps": 3189, "total_steps": 3906, "loss": 1.2851, "learning_rate": 3.299842530118822e-06, "epoch": 0.816384, "percentage": 81.64, "elapsed_time": "11:43:05", "remaining_time": "2:38:04"}
3190
+ {"current_steps": 3190, "total_steps": 3906, "loss": 1.31, "learning_rate": 3.2909053464822093e-06, "epoch": 0.81664, "percentage": 81.67, "elapsed_time": "11:43:18", "remaining_time": "2:37:51"}
3191
+ {"current_steps": 3191, "total_steps": 3906, "loss": 1.304, "learning_rate": 3.281979196742995e-06, "epoch": 0.816896, "percentage": 81.69, "elapsed_time": "11:43:32", "remaining_time": "2:37:38"}
3192
+ {"current_steps": 3192, "total_steps": 3906, "loss": 1.3015, "learning_rate": 3.2730640867955854e-06, "epoch": 0.817152, "percentage": 81.72, "elapsed_time": "11:43:45", "remaining_time": "2:37:25"}
3193
+ {"current_steps": 3193, "total_steps": 3906, "loss": 1.3187, "learning_rate": 3.26416002252711e-06, "epoch": 0.817408, "percentage": 81.75, "elapsed_time": "11:43:58", "remaining_time": "2:37:11"}
3194
+ {"current_steps": 3194, "total_steps": 3906, "loss": 1.3266, "learning_rate": 3.255267009817378e-06, "epoch": 0.817664, "percentage": 81.77, "elapsed_time": "11:44:11", "remaining_time": "2:36:58"}
3195
+ {"current_steps": 3195, "total_steps": 3906, "loss": 1.3274, "learning_rate": 3.246385054538923e-06, "epoch": 0.81792, "percentage": 81.8, "elapsed_time": "11:44:24", "remaining_time": "2:36:45"}
3196
+ {"current_steps": 3196, "total_steps": 3906, "loss": 1.3567, "learning_rate": 3.237514162556972e-06, "epoch": 0.818176, "percentage": 81.82, "elapsed_time": "11:44:38", "remaining_time": "2:36:32"}
3197
+ {"current_steps": 3197, "total_steps": 3906, "loss": 1.274, "learning_rate": 3.2286543397294336e-06, "epoch": 0.818432, "percentage": 81.85, "elapsed_time": "11:44:51", "remaining_time": "2:36:18"}
3198
+ {"current_steps": 3198, "total_steps": 3906, "loss": 1.3127, "learning_rate": 3.2198055919069217e-06, "epoch": 0.818688, "percentage": 81.87, "elapsed_time": "11:45:04", "remaining_time": "2:36:05"}
3199
+ {"current_steps": 3199, "total_steps": 3906, "loss": 1.4128, "learning_rate": 3.210967924932733e-06, "epoch": 0.818944, "percentage": 81.9, "elapsed_time": "11:45:17", "remaining_time": "2:35:52"}
3200
+ {"current_steps": 3200, "total_steps": 3906, "loss": 1.3575, "learning_rate": 3.202141344642844e-06, "epoch": 0.8192, "percentage": 81.93, "elapsed_time": "11:45:30", "remaining_time": "2:35:39"}
3201
+ {"current_steps": 3201, "total_steps": 3906, "loss": 1.306, "learning_rate": 3.1933258568659143e-06, "epoch": 0.819456, "percentage": 81.95, "elapsed_time": "11:46:02", "remaining_time": "2:35:30"}
3202
+ {"current_steps": 3202, "total_steps": 3906, "loss": 1.3308, "learning_rate": 3.184521467423276e-06, "epoch": 0.819712, "percentage": 81.98, "elapsed_time": "11:46:15", "remaining_time": "2:35:16"}
3203
+ {"current_steps": 3203, "total_steps": 3906, "loss": 1.3404, "learning_rate": 3.1757281821289276e-06, "epoch": 0.819968, "percentage": 82.0, "elapsed_time": "11:46:29", "remaining_time": "2:35:03"}
3204
+ {"current_steps": 3204, "total_steps": 3906, "loss": 1.3096, "learning_rate": 3.1669460067895464e-06, "epoch": 0.820224, "percentage": 82.03, "elapsed_time": "11:46:42", "remaining_time": "2:34:50"}
3205
+ {"current_steps": 3205, "total_steps": 3906, "loss": 1.3188, "learning_rate": 3.1581749472044576e-06, "epoch": 0.82048, "percentage": 82.05, "elapsed_time": "11:46:55", "remaining_time": "2:34:37"}
3206
+ {"current_steps": 3206, "total_steps": 3906, "loss": 1.3282, "learning_rate": 3.149415009165662e-06, "epoch": 0.820736, "percentage": 82.08, "elapsed_time": "11:47:08", "remaining_time": "2:34:23"}
3207
+ {"current_steps": 3207, "total_steps": 3906, "loss": 1.2772, "learning_rate": 3.1406661984578046e-06, "epoch": 0.820992, "percentage": 82.1, "elapsed_time": "11:47:22", "remaining_time": "2:34:10"}
3208
+ {"current_steps": 3208, "total_steps": 3906, "loss": 1.3448, "learning_rate": 3.131928520858194e-06, "epoch": 0.821248, "percentage": 82.13, "elapsed_time": "11:47:35", "remaining_time": "2:33:57"}
3209
+ {"current_steps": 3209, "total_steps": 3906, "loss": 1.299, "learning_rate": 3.1232019821367698e-06, "epoch": 0.821504, "percentage": 82.16, "elapsed_time": "11:47:48", "remaining_time": "2:33:44"}
3210
+ {"current_steps": 3210, "total_steps": 3906, "loss": 1.3334, "learning_rate": 3.1144865880561338e-06, "epoch": 0.82176, "percentage": 82.18, "elapsed_time": "11:48:01", "remaining_time": "2:33:30"}
3211
+ {"current_steps": 3211, "total_steps": 3906, "loss": 1.3188, "learning_rate": 3.1057823443715174e-06, "epoch": 0.822016, "percentage": 82.21, "elapsed_time": "11:48:14", "remaining_time": "2:33:17"}
3212
+ {"current_steps": 3212, "total_steps": 3906, "loss": 1.3695, "learning_rate": 3.0970892568307965e-06, "epoch": 0.822272, "percentage": 82.23, "elapsed_time": "11:48:27", "remaining_time": "2:33:04"}
3213
+ {"current_steps": 3213, "total_steps": 3906, "loss": 1.3159, "learning_rate": 3.08840733117447e-06, "epoch": 0.822528, "percentage": 82.26, "elapsed_time": "11:48:41", "remaining_time": "2:32:51"}