diff --git "a/trainer_log.jsonl" "b/trainer_log.jsonl" new file mode 100644--- /dev/null +++ "b/trainer_log.jsonl" @@ -0,0 +1,515 @@ +{"current_steps": 1, "total_steps": 3633, "loss": 1.3244, "learning_rate": 1.0810810810810812e-06, "epoch": 0.0002752356705429024, "percentage": 0.03, "elapsed_time": "0:00:19", "remaining_time": "19:25:10"} +{"current_steps": 2, "total_steps": 3633, "loss": 1.2942, "learning_rate": 2.1621621621621623e-06, "epoch": 0.0005504713410858048, "percentage": 0.06, "elapsed_time": "0:00:30", "remaining_time": "15:22:48"} +{"current_steps": 3, "total_steps": 3633, "loss": 1.3128, "learning_rate": 3.2432432432432437e-06, "epoch": 0.0008257070116287071, "percentage": 0.08, "elapsed_time": "0:00:41", "remaining_time": "14:02:14"} +{"current_steps": 4, "total_steps": 3633, "loss": 1.3307, "learning_rate": 4.324324324324325e-06, "epoch": 0.0011009426821716095, "percentage": 0.11, "elapsed_time": "0:00:52", "remaining_time": "13:13:39"} +{"current_steps": 5, "total_steps": 3633, "loss": 1.2978, "learning_rate": 5.405405405405406e-06, "epoch": 0.0013761783527145117, "percentage": 0.14, "elapsed_time": "0:01:02", "remaining_time": "12:36:31"} +{"current_steps": 6, "total_steps": 3633, "loss": 1.2813, "learning_rate": 6.486486486486487e-06, "epoch": 0.0016514140232574141, "percentage": 0.17, "elapsed_time": "0:01:12", "remaining_time": "12:11:38"} +{"current_steps": 7, "total_steps": 3633, "loss": 1.258, "learning_rate": 7.567567567567569e-06, "epoch": 0.0019266496938003166, "percentage": 0.19, "elapsed_time": "0:01:22", "remaining_time": "11:53:43"} +{"current_steps": 8, "total_steps": 3633, "loss": 1.2677, "learning_rate": 8.64864864864865e-06, "epoch": 0.002201885364343219, "percentage": 0.22, "elapsed_time": "0:01:32", "remaining_time": "11:40:15"} +{"current_steps": 9, "total_steps": 3633, "loss": 1.2826, "learning_rate": 9.729729729729732e-06, "epoch": 0.0024771210348861214, "percentage": 0.25, "elapsed_time": "0:01:42", "remaining_time": "11:29:34"} +{"current_steps": 10, "total_steps": 3633, "loss": 1.3088, "learning_rate": 1.0810810810810812e-05, "epoch": 0.0027523567054290234, "percentage": 0.28, "elapsed_time": "0:01:52", "remaining_time": "11:21:01"} +{"current_steps": 11, "total_steps": 3633, "loss": 1.336, "learning_rate": 1.1891891891891894e-05, "epoch": 0.003027592375971926, "percentage": 0.3, "elapsed_time": "0:02:02", "remaining_time": "11:13:46"} +{"current_steps": 12, "total_steps": 3633, "loss": 1.251, "learning_rate": 1.2972972972972975e-05, "epoch": 0.0033028280465148283, "percentage": 0.33, "elapsed_time": "0:02:12", "remaining_time": "11:08:04"} +{"current_steps": 13, "total_steps": 3633, "loss": 1.2392, "learning_rate": 1.4054054054054055e-05, "epoch": 0.0035780637170577307, "percentage": 0.36, "elapsed_time": "0:02:22", "remaining_time": "11:03:09"} +{"current_steps": 14, "total_steps": 3633, "loss": 1.2263, "learning_rate": 1.5135135135135138e-05, "epoch": 0.003853299387600633, "percentage": 0.39, "elapsed_time": "0:02:32", "remaining_time": "10:58:55"} +{"current_steps": 15, "total_steps": 3633, "loss": 1.2525, "learning_rate": 1.6216216216216218e-05, "epoch": 0.004128535058143535, "percentage": 0.41, "elapsed_time": "0:02:42", "remaining_time": "10:55:15"} +{"current_steps": 16, "total_steps": 3633, "loss": 1.272, "learning_rate": 1.72972972972973e-05, "epoch": 0.004403770728686438, "percentage": 0.44, "elapsed_time": "0:02:53", "remaining_time": "10:51:59"} +{"current_steps": 17, "total_steps": 3633, "loss": 1.2334, "learning_rate": 1.8378378378378383e-05, "epoch": 0.00467900639922934, "percentage": 0.47, "elapsed_time": "0:03:03", "remaining_time": "10:49:03"} +{"current_steps": 18, "total_steps": 3633, "loss": 1.2487, "learning_rate": 1.9459459459459463e-05, "epoch": 0.004954242069772243, "percentage": 0.5, "elapsed_time": "0:03:13", "remaining_time": "10:46:26"} +{"current_steps": 19, "total_steps": 3633, "loss": 1.2216, "learning_rate": 2.054054054054054e-05, "epoch": 0.005229477740315145, "percentage": 0.52, "elapsed_time": "0:03:23", "remaining_time": "10:43:55"} +{"current_steps": 20, "total_steps": 3633, "loss": 1.2092, "learning_rate": 2.1621621621621624e-05, "epoch": 0.005504713410858047, "percentage": 0.55, "elapsed_time": "0:03:33", "remaining_time": "10:41:48"} +{"current_steps": 21, "total_steps": 3633, "loss": 1.2051, "learning_rate": 2.2702702702702705e-05, "epoch": 0.00577994908140095, "percentage": 0.58, "elapsed_time": "0:03:43", "remaining_time": "10:39:56"} +{"current_steps": 22, "total_steps": 3633, "loss": 1.2252, "learning_rate": 2.378378378378379e-05, "epoch": 0.006055184751943852, "percentage": 0.61, "elapsed_time": "0:03:53", "remaining_time": "10:38:09"} +{"current_steps": 23, "total_steps": 3633, "loss": 1.1595, "learning_rate": 2.4864864864864866e-05, "epoch": 0.006330420422486755, "percentage": 0.63, "elapsed_time": "0:04:03", "remaining_time": "10:36:36"} +{"current_steps": 24, "total_steps": 3633, "loss": 1.1715, "learning_rate": 2.594594594594595e-05, "epoch": 0.006605656093029657, "percentage": 0.66, "elapsed_time": "0:04:13", "remaining_time": "10:34:57"} +{"current_steps": 25, "total_steps": 3633, "loss": 1.1759, "learning_rate": 2.702702702702703e-05, "epoch": 0.006880891763572559, "percentage": 0.69, "elapsed_time": "0:04:23", "remaining_time": "10:33:26"} +{"current_steps": 26, "total_steps": 3633, "loss": 1.2134, "learning_rate": 2.810810810810811e-05, "epoch": 0.0071561274341154614, "percentage": 0.72, "elapsed_time": "0:04:33", "remaining_time": "10:32:08"} +{"current_steps": 27, "total_steps": 3633, "loss": 1.1652, "learning_rate": 2.918918918918919e-05, "epoch": 0.007431363104658363, "percentage": 0.74, "elapsed_time": "0:04:43", "remaining_time": "10:30:41"} +{"current_steps": 28, "total_steps": 3633, "loss": 1.1677, "learning_rate": 3.0270270270270275e-05, "epoch": 0.007706598775201266, "percentage": 0.77, "elapsed_time": "0:04:53", "remaining_time": "10:29:19"} +{"current_steps": 29, "total_steps": 3633, "loss": 1.222, "learning_rate": 3.135135135135135e-05, "epoch": 0.00798183444574417, "percentage": 0.8, "elapsed_time": "0:05:03", "remaining_time": "10:28:14"} +{"current_steps": 30, "total_steps": 3633, "loss": 1.1138, "learning_rate": 3.2432432432432436e-05, "epoch": 0.00825707011628707, "percentage": 0.83, "elapsed_time": "0:05:13", "remaining_time": "10:27:14"} +{"current_steps": 31, "total_steps": 3633, "loss": 1.2045, "learning_rate": 3.351351351351351e-05, "epoch": 0.008532305786829973, "percentage": 0.85, "elapsed_time": "0:05:23", "remaining_time": "10:26:18"} +{"current_steps": 32, "total_steps": 3633, "loss": 1.17, "learning_rate": 3.45945945945946e-05, "epoch": 0.008807541457372876, "percentage": 0.88, "elapsed_time": "0:05:33", "remaining_time": "10:25:27"} +{"current_steps": 33, "total_steps": 3633, "loss": 1.117, "learning_rate": 3.567567567567568e-05, "epoch": 0.009082777127915777, "percentage": 0.91, "elapsed_time": "0:05:43", "remaining_time": "10:24:37"} +{"current_steps": 34, "total_steps": 3633, "loss": 1.1313, "learning_rate": 3.6756756756756765e-05, "epoch": 0.00935801279845868, "percentage": 0.94, "elapsed_time": "0:05:53", "remaining_time": "10:23:51"} +{"current_steps": 35, "total_steps": 3633, "loss": 1.1352, "learning_rate": 3.783783783783784e-05, "epoch": 0.009633248469001583, "percentage": 0.96, "elapsed_time": "0:06:03", "remaining_time": "10:23:06"} +{"current_steps": 36, "total_steps": 3633, "loss": 1.1459, "learning_rate": 3.8918918918918926e-05, "epoch": 0.009908484139544486, "percentage": 0.99, "elapsed_time": "0:06:13", "remaining_time": "10:22:24"} +{"current_steps": 37, "total_steps": 3633, "loss": 1.0888, "learning_rate": 4e-05, "epoch": 0.010183719810087387, "percentage": 1.02, "elapsed_time": "0:06:23", "remaining_time": "10:21:42"} +{"current_steps": 38, "total_steps": 3633, "loss": 1.079, "learning_rate": 3.9999992367613554e-05, "epoch": 0.01045895548063029, "percentage": 1.05, "elapsed_time": "0:06:33", "remaining_time": "10:21:02"} +{"current_steps": 39, "total_steps": 3633, "loss": 1.0786, "learning_rate": 3.999996947046004e-05, "epoch": 0.010734191151173193, "percentage": 1.07, "elapsed_time": "0:06:43", "remaining_time": "10:20:22"} +{"current_steps": 40, "total_steps": 3633, "loss": 1.1292, "learning_rate": 3.999993130855694e-05, "epoch": 0.011009426821716094, "percentage": 1.1, "elapsed_time": "0:06:53", "remaining_time": "10:19:44"} +{"current_steps": 41, "total_steps": 3633, "loss": 1.0859, "learning_rate": 3.999987788193337e-05, "epoch": 0.011284662492258997, "percentage": 1.13, "elapsed_time": "0:07:04", "remaining_time": "10:19:11"} +{"current_steps": 42, "total_steps": 3633, "loss": 1.0795, "learning_rate": 3.9999809190630105e-05, "epoch": 0.0115598981628019, "percentage": 1.16, "elapsed_time": "0:07:14", "remaining_time": "10:18:34"} +{"current_steps": 43, "total_steps": 3633, "loss": 1.122, "learning_rate": 3.999972523469959e-05, "epoch": 0.011835133833344802, "percentage": 1.18, "elapsed_time": "0:07:24", "remaining_time": "10:17:56"} +{"current_steps": 44, "total_steps": 3633, "loss": 1.1123, "learning_rate": 3.9999626014205895e-05, "epoch": 0.012110369503887703, "percentage": 1.21, "elapsed_time": "0:07:34", "remaining_time": "10:17:24"} +{"current_steps": 45, "total_steps": 3633, "loss": 1.1017, "learning_rate": 3.999951152922474e-05, "epoch": 0.012385605174430606, "percentage": 1.24, "elapsed_time": "0:07:44", "remaining_time": "10:16:53"} +{"current_steps": 46, "total_steps": 3633, "loss": 1.1362, "learning_rate": 3.9999381779843526e-05, "epoch": 0.01266084084497351, "percentage": 1.27, "elapsed_time": "0:07:54", "remaining_time": "10:16:21"} +{"current_steps": 47, "total_steps": 3633, "loss": 1.149, "learning_rate": 3.999923676616125e-05, "epoch": 0.01293607651551641, "percentage": 1.29, "elapsed_time": "0:08:04", "remaining_time": "10:15:50"} +{"current_steps": 48, "total_steps": 3633, "loss": 1.0965, "learning_rate": 3.9999076488288625e-05, "epoch": 0.013211312186059313, "percentage": 1.32, "elapsed_time": "0:08:14", "remaining_time": "10:15:20"} +{"current_steps": 49, "total_steps": 3633, "loss": 1.1152, "learning_rate": 3.999890094634796e-05, "epoch": 0.013486547856602216, "percentage": 1.35, "elapsed_time": "0:08:24", "remaining_time": "10:14:51"} +{"current_steps": 50, "total_steps": 3633, "loss": 1.0577, "learning_rate": 3.999871014047324e-05, "epoch": 0.013761783527145117, "percentage": 1.38, "elapsed_time": "0:08:34", "remaining_time": "10:14:22"} +{"current_steps": 51, "total_steps": 3633, "loss": 1.0751, "learning_rate": 3.99985040708101e-05, "epoch": 0.01403701919768802, "percentage": 1.4, "elapsed_time": "0:08:44", "remaining_time": "10:13:53"} +{"current_steps": 52, "total_steps": 3633, "loss": 1.0523, "learning_rate": 3.9998282737515826e-05, "epoch": 0.014312254868230923, "percentage": 1.43, "elapsed_time": "0:08:54", "remaining_time": "10:13:27"} +{"current_steps": 53, "total_steps": 3633, "loss": 1.0922, "learning_rate": 3.999804614075934e-05, "epoch": 0.014587490538773826, "percentage": 1.46, "elapsed_time": "0:09:04", "remaining_time": "10:13:01"} +{"current_steps": 54, "total_steps": 3633, "loss": 1.0946, "learning_rate": 3.9997794280721215e-05, "epoch": 0.014862726209316727, "percentage": 1.49, "elapsed_time": "0:09:14", "remaining_time": "10:12:36"} +{"current_steps": 55, "total_steps": 3633, "loss": 1.0982, "learning_rate": 3.999752715759368e-05, "epoch": 0.01513796187985963, "percentage": 1.51, "elapsed_time": "0:09:24", "remaining_time": "10:12:11"} +{"current_steps": 56, "total_steps": 3633, "loss": 1.0606, "learning_rate": 3.999724477158064e-05, "epoch": 0.015413197550402533, "percentage": 1.54, "elapsed_time": "0:09:34", "remaining_time": "10:11:48"} +{"current_steps": 57, "total_steps": 3633, "loss": 1.0699, "learning_rate": 3.9996947122897594e-05, "epoch": 0.015688433220945434, "percentage": 1.57, "elapsed_time": "0:09:44", "remaining_time": "10:11:25"} +{"current_steps": 58, "total_steps": 3633, "loss": 1.1227, "learning_rate": 3.999663421177173e-05, "epoch": 0.01596366889148834, "percentage": 1.6, "elapsed_time": "0:09:54", "remaining_time": "10:11:00"} +{"current_steps": 59, "total_steps": 3633, "loss": 1.0886, "learning_rate": 3.999630603844187e-05, "epoch": 0.01623890456203124, "percentage": 1.62, "elapsed_time": "0:10:04", "remaining_time": "10:10:39"} +{"current_steps": 60, "total_steps": 3633, "loss": 1.0719, "learning_rate": 3.99959626031585e-05, "epoch": 0.01651414023257414, "percentage": 1.65, "elapsed_time": "0:10:14", "remaining_time": "10:10:17"} +{"current_steps": 61, "total_steps": 3633, "loss": 1.0834, "learning_rate": 3.9995603906183726e-05, "epoch": 0.016789375903117045, "percentage": 1.68, "elapsed_time": "0:10:24", "remaining_time": "10:09:55"} +{"current_steps": 62, "total_steps": 3633, "loss": 1.0501, "learning_rate": 3.999522994779133e-05, "epoch": 0.017064611573659946, "percentage": 1.71, "elapsed_time": "0:10:35", "remaining_time": "10:09:34"} +{"current_steps": 63, "total_steps": 3633, "loss": 1.0426, "learning_rate": 3.9994840728266725e-05, "epoch": 0.017339847244202847, "percentage": 1.73, "elapsed_time": "0:10:45", "remaining_time": "10:09:12"} +{"current_steps": 64, "total_steps": 3633, "loss": 1.0442, "learning_rate": 3.999443624790699e-05, "epoch": 0.017615082914745752, "percentage": 1.76, "elapsed_time": "0:10:55", "remaining_time": "10:08:52"} +{"current_steps": 65, "total_steps": 3633, "loss": 1.0532, "learning_rate": 3.999401650702083e-05, "epoch": 0.017890318585288653, "percentage": 1.79, "elapsed_time": "0:11:05", "remaining_time": "10:08:29"} +{"current_steps": 66, "total_steps": 3633, "loss": 1.047, "learning_rate": 3.999358150592861e-05, "epoch": 0.018165554255831554, "percentage": 1.82, "elapsed_time": "0:11:15", "remaining_time": "10:08:08"} +{"current_steps": 67, "total_steps": 3633, "loss": 1.0394, "learning_rate": 3.999313124496234e-05, "epoch": 0.01844078992637446, "percentage": 1.84, "elapsed_time": "0:11:25", "remaining_time": "10:07:47"} +{"current_steps": 68, "total_steps": 3633, "loss": 1.0159, "learning_rate": 3.9992665724465686e-05, "epoch": 0.01871602559691736, "percentage": 1.87, "elapsed_time": "0:11:35", "remaining_time": "10:07:28"} +{"current_steps": 69, "total_steps": 3633, "loss": 1.0412, "learning_rate": 3.999218494479393e-05, "epoch": 0.01899126126746026, "percentage": 1.9, "elapsed_time": "0:11:45", "remaining_time": "10:07:10"} +{"current_steps": 70, "total_steps": 3633, "loss": 1.0444, "learning_rate": 3.999168890631404e-05, "epoch": 0.019266496938003166, "percentage": 1.93, "elapsed_time": "0:11:55", "remaining_time": "10:06:52"} +{"current_steps": 71, "total_steps": 3633, "loss": 1.0716, "learning_rate": 3.99911776094046e-05, "epoch": 0.019541732608546067, "percentage": 1.95, "elapsed_time": "0:12:05", "remaining_time": "10:06:33"} +{"current_steps": 72, "total_steps": 3633, "loss": 1.0518, "learning_rate": 3.999065105445586e-05, "epoch": 0.01981696827908897, "percentage": 1.98, "elapsed_time": "0:12:15", "remaining_time": "10:06:15"} +{"current_steps": 73, "total_steps": 3633, "loss": 1.0511, "learning_rate": 3.99901092418697e-05, "epoch": 0.020092203949631873, "percentage": 2.01, "elapsed_time": "0:12:25", "remaining_time": "10:06:00"} +{"current_steps": 74, "total_steps": 3633, "loss": 1.0521, "learning_rate": 3.998955217205966e-05, "epoch": 0.020367439620174774, "percentage": 2.04, "elapsed_time": "0:12:35", "remaining_time": "10:05:43"} +{"current_steps": 75, "total_steps": 3633, "loss": 1.0283, "learning_rate": 3.998897984545091e-05, "epoch": 0.02064267529071768, "percentage": 2.06, "elapsed_time": "0:12:45", "remaining_time": "10:05:25"} +{"current_steps": 76, "total_steps": 3633, "loss": 1.0381, "learning_rate": 3.9988392262480274e-05, "epoch": 0.02091791096126058, "percentage": 2.09, "elapsed_time": "0:12:55", "remaining_time": "10:05:08"} +{"current_steps": 77, "total_steps": 3633, "loss": 1.0271, "learning_rate": 3.9987789423596224e-05, "epoch": 0.02119314663180348, "percentage": 2.12, "elapsed_time": "0:13:05", "remaining_time": "10:04:50"} +{"current_steps": 78, "total_steps": 3633, "loss": 1.0095, "learning_rate": 3.998717132925886e-05, "epoch": 0.021468382302346385, "percentage": 2.15, "elapsed_time": "0:13:15", "remaining_time": "10:04:32"} +{"current_steps": 79, "total_steps": 3633, "loss": 1.0274, "learning_rate": 3.998653797993995e-05, "epoch": 0.021743617972889286, "percentage": 2.17, "elapsed_time": "0:13:25", "remaining_time": "10:04:16"} +{"current_steps": 80, "total_steps": 3633, "loss": 1.0084, "learning_rate": 3.998588937612287e-05, "epoch": 0.022018853643432187, "percentage": 2.2, "elapsed_time": "0:13:35", "remaining_time": "10:03:59"} +{"current_steps": 81, "total_steps": 3633, "loss": 1.0515, "learning_rate": 3.998522551830267e-05, "epoch": 0.022294089313975092, "percentage": 2.23, "elapsed_time": "0:13:46", "remaining_time": "10:03:44"} +{"current_steps": 82, "total_steps": 3633, "loss": 0.9933, "learning_rate": 3.9984546406986045e-05, "epoch": 0.022569324984517993, "percentage": 2.26, "elapsed_time": "0:13:56", "remaining_time": "10:03:26"} +{"current_steps": 83, "total_steps": 3633, "loss": 1.0159, "learning_rate": 3.99838520426913e-05, "epoch": 0.022844560655060894, "percentage": 2.28, "elapsed_time": "0:14:06", "remaining_time": "10:03:10"} +{"current_steps": 84, "total_steps": 3633, "loss": 0.9955, "learning_rate": 3.998314242594841e-05, "epoch": 0.0231197963256038, "percentage": 2.31, "elapsed_time": "0:14:16", "remaining_time": "10:02:55"} +{"current_steps": 85, "total_steps": 3633, "loss": 1.0673, "learning_rate": 3.998241755729897e-05, "epoch": 0.0233950319961467, "percentage": 2.34, "elapsed_time": "0:14:26", "remaining_time": "10:02:35"} +{"current_steps": 86, "total_steps": 3633, "loss": 1.0341, "learning_rate": 3.9981677437296244e-05, "epoch": 0.023670267666689605, "percentage": 2.37, "elapsed_time": "0:14:36", "remaining_time": "10:02:17"} +{"current_steps": 87, "total_steps": 3633, "loss": 0.994, "learning_rate": 3.998092206650511e-05, "epoch": 0.023945503337232506, "percentage": 2.39, "elapsed_time": "0:14:46", "remaining_time": "10:02:02"} +{"current_steps": 88, "total_steps": 3633, "loss": 1.0059, "learning_rate": 3.99801514455021e-05, "epoch": 0.024220739007775407, "percentage": 2.42, "elapsed_time": "0:14:56", "remaining_time": "10:01:47"} +{"current_steps": 89, "total_steps": 3633, "loss": 1.0232, "learning_rate": 3.997936557487539e-05, "epoch": 0.02449597467831831, "percentage": 2.45, "elapsed_time": "0:15:06", "remaining_time": "10:01:32"} +{"current_steps": 90, "total_steps": 3633, "loss": 1.0154, "learning_rate": 3.9978564455224764e-05, "epoch": 0.024771210348861213, "percentage": 2.48, "elapsed_time": "0:15:16", "remaining_time": "10:01:16"} +{"current_steps": 91, "total_steps": 3633, "loss": 1.012, "learning_rate": 3.9977748087161696e-05, "epoch": 0.025046446019404114, "percentage": 2.5, "elapsed_time": "0:15:26", "remaining_time": "10:01:01"} +{"current_steps": 92, "total_steps": 3633, "loss": 1.0143, "learning_rate": 3.997691647130924e-05, "epoch": 0.02532168168994702, "percentage": 2.53, "elapsed_time": "0:15:36", "remaining_time": "10:00:46"} +{"current_steps": 93, "total_steps": 3633, "loss": 0.9854, "learning_rate": 3.997606960830214e-05, "epoch": 0.02559691736048992, "percentage": 2.56, "elapsed_time": "0:15:46", "remaining_time": "10:00:30"} +{"current_steps": 94, "total_steps": 3633, "loss": 0.9797, "learning_rate": 3.997520749878675e-05, "epoch": 0.02587215303103282, "percentage": 2.59, "elapsed_time": "0:15:56", "remaining_time": "10:00:15"} +{"current_steps": 95, "total_steps": 3633, "loss": 1.0083, "learning_rate": 3.997433014342106e-05, "epoch": 0.026147388701575725, "percentage": 2.61, "elapsed_time": "0:16:06", "remaining_time": "10:00:00"} +{"current_steps": 96, "total_steps": 3633, "loss": 1.0098, "learning_rate": 3.99734375428747e-05, "epoch": 0.026422624372118626, "percentage": 2.64, "elapsed_time": "0:16:16", "remaining_time": "9:59:45"} +{"current_steps": 97, "total_steps": 3633, "loss": 1.0194, "learning_rate": 3.997252969782895e-05, "epoch": 0.026697860042661527, "percentage": 2.67, "elapsed_time": "0:16:26", "remaining_time": "9:59:31"} +{"current_steps": 98, "total_steps": 3633, "loss": 1.0421, "learning_rate": 3.9971606608976694e-05, "epoch": 0.026973095713204432, "percentage": 2.7, "elapsed_time": "0:16:36", "remaining_time": "9:59:18"} +{"current_steps": 99, "total_steps": 3633, "loss": 1.0255, "learning_rate": 3.997066827702248e-05, "epoch": 0.027248331383747333, "percentage": 2.73, "elapsed_time": "0:16:46", "remaining_time": "9:59:04"} +{"current_steps": 100, "total_steps": 3633, "loss": 1.0096, "learning_rate": 3.996971470268248e-05, "epoch": 0.027523567054290234, "percentage": 2.75, "elapsed_time": "0:16:56", "remaining_time": "9:58:50"} +{"current_steps": 101, "total_steps": 3633, "loss": 1.0278, "learning_rate": 3.9968745886684496e-05, "epoch": 0.02779880272483314, "percentage": 2.78, "elapsed_time": "0:17:07", "remaining_time": "9:58:36"} +{"current_steps": 102, "total_steps": 3633, "loss": 1.0016, "learning_rate": 3.996776182976796e-05, "epoch": 0.02807403839537604, "percentage": 2.81, "elapsed_time": "0:17:16", "remaining_time": "9:58:17"} +{"current_steps": 103, "total_steps": 3633, "loss": 0.9778, "learning_rate": 3.996676253268396e-05, "epoch": 0.028349274065918945, "percentage": 2.84, "elapsed_time": "0:17:26", "remaining_time": "9:57:58"} +{"current_steps": 104, "total_steps": 3633, "loss": 1.0021, "learning_rate": 3.996574799619518e-05, "epoch": 0.028624509736461846, "percentage": 2.86, "elapsed_time": "0:17:36", "remaining_time": "9:57:42"} +{"current_steps": 105, "total_steps": 3633, "loss": 0.9949, "learning_rate": 3.996471822107596e-05, "epoch": 0.028899745407004747, "percentage": 2.89, "elapsed_time": "0:17:46", "remaining_time": "9:57:28"} +{"current_steps": 106, "total_steps": 3633, "loss": 0.9761, "learning_rate": 3.996367320811227e-05, "epoch": 0.02917498107754765, "percentage": 2.92, "elapsed_time": "0:17:56", "remaining_time": "9:57:13"} +{"current_steps": 107, "total_steps": 3633, "loss": 1.0035, "learning_rate": 3.9962612958101696e-05, "epoch": 0.029450216748090553, "percentage": 2.95, "elapsed_time": "0:18:06", "remaining_time": "9:56:58"} +{"current_steps": 108, "total_steps": 3633, "loss": 0.9801, "learning_rate": 3.996153747185347e-05, "epoch": 0.029725452418633454, "percentage": 2.97, "elapsed_time": "0:18:16", "remaining_time": "9:56:44"} +{"current_steps": 109, "total_steps": 3633, "loss": 1.0151, "learning_rate": 3.996044675018842e-05, "epoch": 0.03000068808917636, "percentage": 3.0, "elapsed_time": "0:18:26", "remaining_time": "9:56:28"} +{"current_steps": 110, "total_steps": 3633, "loss": 1.0307, "learning_rate": 3.9959340793939064e-05, "epoch": 0.03027592375971926, "percentage": 3.03, "elapsed_time": "0:18:37", "remaining_time": "9:56:14"} +{"current_steps": 111, "total_steps": 3633, "loss": 0.9759, "learning_rate": 3.9958219603949486e-05, "epoch": 0.03055115943026216, "percentage": 3.06, "elapsed_time": "0:18:47", "remaining_time": "9:56:00"} +{"current_steps": 112, "total_steps": 3633, "loss": 0.9859, "learning_rate": 3.995708318107543e-05, "epoch": 0.030826395100805065, "percentage": 3.08, "elapsed_time": "0:18:57", "remaining_time": "9:55:47"} +{"current_steps": 113, "total_steps": 3633, "loss": 1.0195, "learning_rate": 3.995593152618425e-05, "epoch": 0.031101630771347966, "percentage": 3.11, "elapsed_time": "0:19:07", "remaining_time": "9:55:32"} +{"current_steps": 114, "total_steps": 3633, "loss": 0.9947, "learning_rate": 3.995476464015495e-05, "epoch": 0.03137686644189087, "percentage": 3.14, "elapsed_time": "0:19:17", "remaining_time": "9:55:20"} +{"current_steps": 115, "total_steps": 3633, "loss": 0.9779, "learning_rate": 3.995358252387813e-05, "epoch": 0.03165210211243377, "percentage": 3.17, "elapsed_time": "0:19:27", "remaining_time": "9:55:07"} +{"current_steps": 116, "total_steps": 3633, "loss": 1.0109, "learning_rate": 3.995238517825602e-05, "epoch": 0.03192733778297668, "percentage": 3.19, "elapsed_time": "0:19:37", "remaining_time": "9:54:55"} +{"current_steps": 117, "total_steps": 3633, "loss": 0.9705, "learning_rate": 3.9951172604202494e-05, "epoch": 0.032202573453519574, "percentage": 3.22, "elapsed_time": "0:19:47", "remaining_time": "9:54:42"} +{"current_steps": 118, "total_steps": 3633, "loss": 0.9877, "learning_rate": 3.9949944802643036e-05, "epoch": 0.03247780912406248, "percentage": 3.25, "elapsed_time": "0:19:57", "remaining_time": "9:54:29"} +{"current_steps": 119, "total_steps": 3633, "loss": 0.9867, "learning_rate": 3.994870177451474e-05, "epoch": 0.032753044794605383, "percentage": 3.28, "elapsed_time": "0:20:07", "remaining_time": "9:54:17"} +{"current_steps": 120, "total_steps": 3633, "loss": 0.9966, "learning_rate": 3.994744352076634e-05, "epoch": 0.03302828046514828, "percentage": 3.3, "elapsed_time": "0:20:17", "remaining_time": "9:54:04"} +{"current_steps": 121, "total_steps": 3633, "loss": 0.987, "learning_rate": 3.9946170042358185e-05, "epoch": 0.033303516135691186, "percentage": 3.33, "elapsed_time": "0:20:27", "remaining_time": "9:53:52"} +{"current_steps": 122, "total_steps": 3633, "loss": 0.9963, "learning_rate": 3.994488134026224e-05, "epoch": 0.03357875180623409, "percentage": 3.36, "elapsed_time": "0:20:37", "remaining_time": "9:53:39"} +{"current_steps": 123, "total_steps": 3633, "loss": 1.0157, "learning_rate": 3.99435774154621e-05, "epoch": 0.03385398747677699, "percentage": 3.39, "elapsed_time": "0:20:47", "remaining_time": "9:53:26"} +{"current_steps": 124, "total_steps": 3633, "loss": 0.9846, "learning_rate": 3.994225826895295e-05, "epoch": 0.03412922314731989, "percentage": 3.41, "elapsed_time": "0:20:57", "remaining_time": "9:53:13"} +{"current_steps": 125, "total_steps": 3633, "loss": 0.9947, "learning_rate": 3.994092390174164e-05, "epoch": 0.0344044588178628, "percentage": 3.44, "elapsed_time": "0:21:07", "remaining_time": "9:53:00"} +{"current_steps": 126, "total_steps": 3633, "loss": 0.9563, "learning_rate": 3.993957431484659e-05, "epoch": 0.034679694488405695, "percentage": 3.47, "elapsed_time": "0:21:17", "remaining_time": "9:52:47"} +{"current_steps": 127, "total_steps": 3633, "loss": 0.9564, "learning_rate": 3.993820950929787e-05, "epoch": 0.0349549301589486, "percentage": 3.5, "elapsed_time": "0:21:27", "remaining_time": "9:52:35"} +{"current_steps": 128, "total_steps": 3633, "loss": 1.005, "learning_rate": 3.9936829486137145e-05, "epoch": 0.035230165829491504, "percentage": 3.52, "elapsed_time": "0:21:38", "remaining_time": "9:52:23"} +{"current_steps": 129, "total_steps": 3633, "loss": 0.9629, "learning_rate": 3.993543424641771e-05, "epoch": 0.0355054015000344, "percentage": 3.55, "elapsed_time": "0:21:48", "remaining_time": "9:52:11"} +{"current_steps": 130, "total_steps": 3633, "loss": 0.9779, "learning_rate": 3.993402379120446e-05, "epoch": 0.035780637170577306, "percentage": 3.58, "elapsed_time": "0:21:58", "remaining_time": "9:51:59"} +{"current_steps": 131, "total_steps": 3633, "loss": 0.9683, "learning_rate": 3.9932598121573906e-05, "epoch": 0.03605587284112021, "percentage": 3.61, "elapsed_time": "0:22:08", "remaining_time": "9:51:46"} +{"current_steps": 132, "total_steps": 3633, "loss": 0.9484, "learning_rate": 3.993115723861418e-05, "epoch": 0.03633110851166311, "percentage": 3.63, "elapsed_time": "0:22:18", "remaining_time": "9:51:32"} +{"current_steps": 133, "total_steps": 3633, "loss": 0.9754, "learning_rate": 3.9929701143425014e-05, "epoch": 0.03660634418220601, "percentage": 3.66, "elapsed_time": "0:22:28", "remaining_time": "9:51:18"} +{"current_steps": 134, "total_steps": 3633, "loss": 0.9752, "learning_rate": 3.992822983711776e-05, "epoch": 0.03688157985274892, "percentage": 3.69, "elapsed_time": "0:22:38", "remaining_time": "9:51:02"} +{"current_steps": 135, "total_steps": 3633, "loss": 0.9897, "learning_rate": 3.992674332081538e-05, "epoch": 0.037156815523291815, "percentage": 3.72, "elapsed_time": "0:22:48", "remaining_time": "9:50:50"} +{"current_steps": 136, "total_steps": 3633, "loss": 0.9637, "learning_rate": 3.992524159565243e-05, "epoch": 0.03743205119383472, "percentage": 3.74, "elapsed_time": "0:22:58", "remaining_time": "9:50:37"} +{"current_steps": 137, "total_steps": 3633, "loss": 1.0147, "learning_rate": 3.992372466277509e-05, "epoch": 0.037707286864377625, "percentage": 3.77, "elapsed_time": "0:23:08", "remaining_time": "9:50:22"} +{"current_steps": 138, "total_steps": 3633, "loss": 0.9392, "learning_rate": 3.992219252334114e-05, "epoch": 0.03798252253492052, "percentage": 3.8, "elapsed_time": "0:23:18", "remaining_time": "9:50:09"} +{"current_steps": 139, "total_steps": 3633, "loss": 1.0044, "learning_rate": 3.992064517851998e-05, "epoch": 0.03825775820546343, "percentage": 3.83, "elapsed_time": "0:23:28", "remaining_time": "9:49:57"} +{"current_steps": 140, "total_steps": 3633, "loss": 0.9724, "learning_rate": 3.9919082629492585e-05, "epoch": 0.03853299387600633, "percentage": 3.85, "elapsed_time": "0:23:38", "remaining_time": "9:49:44"} +{"current_steps": 141, "total_steps": 3633, "loss": 0.9732, "learning_rate": 3.9917504877451563e-05, "epoch": 0.038808229546549236, "percentage": 3.88, "elapsed_time": "0:23:48", "remaining_time": "9:49:32"} +{"current_steps": 142, "total_steps": 3633, "loss": 0.9783, "learning_rate": 3.991591192360112e-05, "epoch": 0.039083465217092134, "percentage": 3.91, "elapsed_time": "0:23:58", "remaining_time": "9:49:20"} +{"current_steps": 143, "total_steps": 3633, "loss": 1.003, "learning_rate": 3.991430376915704e-05, "epoch": 0.03935870088763504, "percentage": 3.94, "elapsed_time": "0:24:08", "remaining_time": "9:49:08"} +{"current_steps": 144, "total_steps": 3633, "loss": 0.9622, "learning_rate": 3.991268041534676e-05, "epoch": 0.03963393655817794, "percentage": 3.96, "elapsed_time": "0:24:18", "remaining_time": "9:48:56"} +{"current_steps": 145, "total_steps": 3633, "loss": 0.9903, "learning_rate": 3.991104186340926e-05, "epoch": 0.03990917222872084, "percentage": 3.99, "elapsed_time": "0:24:28", "remaining_time": "9:48:45"} +{"current_steps": 146, "total_steps": 3633, "loss": 0.974, "learning_rate": 3.990938811459516e-05, "epoch": 0.040184407899263745, "percentage": 4.02, "elapsed_time": "0:24:38", "remaining_time": "9:48:33"} +{"current_steps": 147, "total_steps": 3633, "loss": 1.0046, "learning_rate": 3.990771917016665e-05, "epoch": 0.04045964356980665, "percentage": 4.05, "elapsed_time": "0:24:48", "remaining_time": "9:48:21"} +{"current_steps": 148, "total_steps": 3633, "loss": 0.9755, "learning_rate": 3.990603503139755e-05, "epoch": 0.04073487924034955, "percentage": 4.07, "elapsed_time": "0:24:58", "remaining_time": "9:48:09"} +{"current_steps": 149, "total_steps": 3633, "loss": 1.0003, "learning_rate": 3.9904335699573245e-05, "epoch": 0.04101011491089245, "percentage": 4.1, "elapsed_time": "0:25:08", "remaining_time": "9:47:57"} +{"current_steps": 150, "total_steps": 3633, "loss": 0.962, "learning_rate": 3.990262117599074e-05, "epoch": 0.04128535058143536, "percentage": 4.13, "elapsed_time": "0:25:18", "remaining_time": "9:47:46"} +{"current_steps": 151, "total_steps": 3633, "loss": 0.9254, "learning_rate": 3.990089146195863e-05, "epoch": 0.041560586251978254, "percentage": 4.16, "elapsed_time": "0:25:28", "remaining_time": "9:47:34"} +{"current_steps": 152, "total_steps": 3633, "loss": 0.9785, "learning_rate": 3.98991465587971e-05, "epoch": 0.04183582192252116, "percentage": 4.18, "elapsed_time": "0:25:38", "remaining_time": "9:47:23"} +{"current_steps": 153, "total_steps": 3633, "loss": 0.9868, "learning_rate": 3.98973864678379e-05, "epoch": 0.042111057593064063, "percentage": 4.21, "elapsed_time": "0:25:48", "remaining_time": "9:47:11"} +{"current_steps": 154, "total_steps": 3633, "loss": 0.9537, "learning_rate": 3.989561119042444e-05, "epoch": 0.04238629326360696, "percentage": 4.24, "elapsed_time": "0:25:59", "remaining_time": "9:46:59"} +{"current_steps": 155, "total_steps": 3633, "loss": 0.9414, "learning_rate": 3.989382072791166e-05, "epoch": 0.042661528934149866, "percentage": 4.27, "elapsed_time": "0:26:09", "remaining_time": "9:46:47"} +{"current_steps": 156, "total_steps": 3633, "loss": 0.9842, "learning_rate": 3.98920150816661e-05, "epoch": 0.04293676460469277, "percentage": 4.29, "elapsed_time": "0:26:19", "remaining_time": "9:46:35"} +{"current_steps": 157, "total_steps": 3633, "loss": 0.9935, "learning_rate": 3.989019425306591e-05, "epoch": 0.04321200027523567, "percentage": 4.32, "elapsed_time": "0:26:29", "remaining_time": "9:46:24"} +{"current_steps": 158, "total_steps": 3633, "loss": 0.9468, "learning_rate": 3.9888358243500825e-05, "epoch": 0.04348723594577857, "percentage": 4.35, "elapsed_time": "0:26:39", "remaining_time": "9:46:13"} +{"current_steps": 159, "total_steps": 3633, "loss": 0.93, "learning_rate": 3.988650705437214e-05, "epoch": 0.04376247161632148, "percentage": 4.38, "elapsed_time": "0:26:49", "remaining_time": "9:46:01"} +{"current_steps": 160, "total_steps": 3633, "loss": 0.9581, "learning_rate": 3.9884640687092775e-05, "epoch": 0.044037707286864375, "percentage": 4.4, "elapsed_time": "0:26:59", "remaining_time": "9:45:50"} +{"current_steps": 161, "total_steps": 3633, "loss": 0.9922, "learning_rate": 3.9882759143087194e-05, "epoch": 0.04431294295740728, "percentage": 4.43, "elapsed_time": "0:27:09", "remaining_time": "9:45:39"} +{"current_steps": 162, "total_steps": 3633, "loss": 0.97, "learning_rate": 3.988086242379148e-05, "epoch": 0.044588178627950184, "percentage": 4.46, "elapsed_time": "0:27:19", "remaining_time": "9:45:27"} +{"current_steps": 163, "total_steps": 3633, "loss": 0.9687, "learning_rate": 3.987895053065327e-05, "epoch": 0.04486341429849308, "percentage": 4.49, "elapsed_time": "0:27:29", "remaining_time": "9:45:15"} +{"current_steps": 164, "total_steps": 3633, "loss": 0.9226, "learning_rate": 3.9877023465131806e-05, "epoch": 0.045138649969035986, "percentage": 4.51, "elapsed_time": "0:27:39", "remaining_time": "9:45:01"} +{"current_steps": 165, "total_steps": 3633, "loss": 0.9457, "learning_rate": 3.987508122869789e-05, "epoch": 0.04541388563957889, "percentage": 4.54, "elapsed_time": "0:27:49", "remaining_time": "9:44:49"} +{"current_steps": 166, "total_steps": 3633, "loss": 0.9255, "learning_rate": 3.987312382283391e-05, "epoch": 0.04568912131012179, "percentage": 4.57, "elapsed_time": "0:27:59", "remaining_time": "9:44:38"} +{"current_steps": 167, "total_steps": 3633, "loss": 0.9525, "learning_rate": 3.9871151249033844e-05, "epoch": 0.04596435698066469, "percentage": 4.6, "elapsed_time": "0:28:09", "remaining_time": "9:44:26"} +{"current_steps": 168, "total_steps": 3633, "loss": 0.9228, "learning_rate": 3.986916350880323e-05, "epoch": 0.0462395926512076, "percentage": 4.62, "elapsed_time": "0:28:19", "remaining_time": "9:44:15"} +{"current_steps": 169, "total_steps": 3633, "loss": 0.9579, "learning_rate": 3.986716060365919e-05, "epoch": 0.046514828321750495, "percentage": 4.65, "elapsed_time": "0:28:29", "remaining_time": "9:44:03"} +{"current_steps": 170, "total_steps": 3633, "loss": 0.9415, "learning_rate": 3.986514253513042e-05, "epoch": 0.0467900639922934, "percentage": 4.68, "elapsed_time": "0:28:39", "remaining_time": "9:43:51"} +{"current_steps": 171, "total_steps": 3633, "loss": 0.9374, "learning_rate": 3.986310930475719e-05, "epoch": 0.047065299662836305, "percentage": 4.71, "elapsed_time": "0:28:49", "remaining_time": "9:43:40"} +{"current_steps": 172, "total_steps": 3633, "loss": 0.9613, "learning_rate": 3.986106091409133e-05, "epoch": 0.04734053533337921, "percentage": 4.73, "elapsed_time": "0:28:59", "remaining_time": "9:43:28"} +{"current_steps": 173, "total_steps": 3633, "loss": 0.9489, "learning_rate": 3.9858997364696254e-05, "epoch": 0.04761577100392211, "percentage": 4.76, "elapsed_time": "0:29:09", "remaining_time": "9:43:16"} +{"current_steps": 174, "total_steps": 3633, "loss": 0.9396, "learning_rate": 3.985691865814695e-05, "epoch": 0.04789100667446501, "percentage": 4.79, "elapsed_time": "0:29:19", "remaining_time": "9:43:05"} +{"current_steps": 175, "total_steps": 3633, "loss": 0.9404, "learning_rate": 3.985482479602996e-05, "epoch": 0.048166242345007916, "percentage": 4.82, "elapsed_time": "0:29:29", "remaining_time": "9:42:50"} +{"current_steps": 176, "total_steps": 3633, "loss": 0.9477, "learning_rate": 3.9852715779943404e-05, "epoch": 0.048441478015550814, "percentage": 4.84, "elapsed_time": "0:29:39", "remaining_time": "9:42:39"} +{"current_steps": 177, "total_steps": 3633, "loss": 0.9446, "learning_rate": 3.985059161149696e-05, "epoch": 0.04871671368609372, "percentage": 4.87, "elapsed_time": "0:29:49", "remaining_time": "9:42:26"} +{"current_steps": 178, "total_steps": 3633, "loss": 0.9043, "learning_rate": 3.984845229231189e-05, "epoch": 0.04899194935663662, "percentage": 4.9, "elapsed_time": "0:29:59", "remaining_time": "9:42:12"} +{"current_steps": 179, "total_steps": 3633, "loss": 0.9572, "learning_rate": 3.984629782402098e-05, "epoch": 0.04926718502717952, "percentage": 4.93, "elapsed_time": "0:30:09", "remaining_time": "9:42:01"} +{"current_steps": 180, "total_steps": 3633, "loss": 0.9583, "learning_rate": 3.9844128208268634e-05, "epoch": 0.049542420697722425, "percentage": 4.95, "elapsed_time": "0:30:19", "remaining_time": "9:41:47"} +{"current_steps": 181, "total_steps": 3633, "loss": 0.928, "learning_rate": 3.9841943446710756e-05, "epoch": 0.04981765636826533, "percentage": 4.98, "elapsed_time": "0:30:29", "remaining_time": "9:41:35"} +{"current_steps": 182, "total_steps": 3633, "loss": 0.9501, "learning_rate": 3.983974354101486e-05, "epoch": 0.05009289203880823, "percentage": 5.01, "elapsed_time": "0:30:39", "remaining_time": "9:41:24"} +{"current_steps": 183, "total_steps": 3633, "loss": 1.0529, "learning_rate": 3.983752849286e-05, "epoch": 0.05036812770935113, "percentage": 5.04, "elapsed_time": "0:30:49", "remaining_time": "9:41:13"} +{"current_steps": 184, "total_steps": 3633, "loss": 0.9018, "learning_rate": 3.983529830393677e-05, "epoch": 0.05064336337989404, "percentage": 5.06, "elapsed_time": "0:30:59", "remaining_time": "9:41:02"} +{"current_steps": 185, "total_steps": 3633, "loss": 0.9542, "learning_rate": 3.9833052975947356e-05, "epoch": 0.050918599050436934, "percentage": 5.09, "elapsed_time": "0:31:09", "remaining_time": "9:40:51"} +{"current_steps": 186, "total_steps": 3633, "loss": 0.9326, "learning_rate": 3.9830792510605463e-05, "epoch": 0.05119383472097984, "percentage": 5.12, "elapsed_time": "0:31:20", "remaining_time": "9:40:41"} +{"current_steps": 187, "total_steps": 3633, "loss": 0.9725, "learning_rate": 3.982851690963637e-05, "epoch": 0.051469070391522743, "percentage": 5.15, "elapsed_time": "0:31:30", "remaining_time": "9:40:30"} +{"current_steps": 188, "total_steps": 3633, "loss": 0.9741, "learning_rate": 3.982622617477691e-05, "epoch": 0.05174430606206564, "percentage": 5.17, "elapsed_time": "0:31:40", "remaining_time": "9:40:19"} +{"current_steps": 189, "total_steps": 3633, "loss": 0.9191, "learning_rate": 3.9823920307775464e-05, "epoch": 0.052019541732608546, "percentage": 5.2, "elapsed_time": "0:31:50", "remaining_time": "9:40:08"} +{"current_steps": 190, "total_steps": 3633, "loss": 0.9385, "learning_rate": 3.982159931039194e-05, "epoch": 0.05229477740315145, "percentage": 5.23, "elapsed_time": "0:32:00", "remaining_time": "9:39:58"} +{"current_steps": 191, "total_steps": 3633, "loss": 0.9482, "learning_rate": 3.981926318439782e-05, "epoch": 0.05257001307369435, "percentage": 5.26, "elapsed_time": "0:32:10", "remaining_time": "9:39:47"} +{"current_steps": 192, "total_steps": 3633, "loss": 0.9376, "learning_rate": 3.981691193157614e-05, "epoch": 0.05284524874423725, "percentage": 5.28, "elapsed_time": "0:32:20", "remaining_time": "9:39:36"} +{"current_steps": 193, "total_steps": 3633, "loss": 0.9337, "learning_rate": 3.9814545553721456e-05, "epoch": 0.05312048441478016, "percentage": 5.31, "elapsed_time": "0:32:30", "remaining_time": "9:39:26"} +{"current_steps": 194, "total_steps": 3633, "loss": 0.9465, "learning_rate": 3.981216405263987e-05, "epoch": 0.053395720085323055, "percentage": 5.34, "elapsed_time": "0:32:40", "remaining_time": "9:39:15"} +{"current_steps": 195, "total_steps": 3633, "loss": 0.9629, "learning_rate": 3.980976743014905e-05, "epoch": 0.05367095575586596, "percentage": 5.37, "elapsed_time": "0:32:50", "remaining_time": "9:39:04"} +{"current_steps": 196, "total_steps": 3633, "loss": 0.9609, "learning_rate": 3.9807355688078193e-05, "epoch": 0.053946191426408864, "percentage": 5.39, "elapsed_time": "0:33:00", "remaining_time": "9:38:52"} +{"current_steps": 197, "total_steps": 3633, "loss": 0.9278, "learning_rate": 3.9804928828268015e-05, "epoch": 0.05422142709695176, "percentage": 5.42, "elapsed_time": "0:33:10", "remaining_time": "9:38:41"} +{"current_steps": 198, "total_steps": 3633, "loss": 0.9465, "learning_rate": 3.980248685257081e-05, "epoch": 0.054496662767494666, "percentage": 5.45, "elapsed_time": "0:33:20", "remaining_time": "9:38:30"} +{"current_steps": 199, "total_steps": 3633, "loss": 0.9202, "learning_rate": 3.980002976285037e-05, "epoch": 0.05477189843803757, "percentage": 5.48, "elapsed_time": "0:33:30", "remaining_time": "9:38:19"} +{"current_steps": 200, "total_steps": 3633, "loss": 0.9491, "learning_rate": 3.9797557560982056e-05, "epoch": 0.05504713410858047, "percentage": 5.51, "elapsed_time": "0:33:40", "remaining_time": "9:38:08"} +{"current_steps": 201, "total_steps": 3633, "loss": 0.9361, "learning_rate": 3.979507024885274e-05, "epoch": 0.05532236977912337, "percentage": 5.53, "elapsed_time": "0:33:50", "remaining_time": "9:37:54"} +{"current_steps": 202, "total_steps": 3633, "loss": 0.939, "learning_rate": 3.9792567828360843e-05, "epoch": 0.05559760544966628, "percentage": 5.56, "elapsed_time": "0:34:00", "remaining_time": "9:37:43"} +{"current_steps": 203, "total_steps": 3633, "loss": 0.9502, "learning_rate": 3.97900503014163e-05, "epoch": 0.05587284112020918, "percentage": 5.59, "elapsed_time": "0:34:10", "remaining_time": "9:37:31"} +{"current_steps": 204, "total_steps": 3633, "loss": 0.9512, "learning_rate": 3.978751766994059e-05, "epoch": 0.05614807679075208, "percentage": 5.62, "elapsed_time": "0:34:20", "remaining_time": "9:37:19"} +{"current_steps": 205, "total_steps": 3633, "loss": 0.9378, "learning_rate": 3.97849699358667e-05, "epoch": 0.056423312461294985, "percentage": 5.64, "elapsed_time": "0:34:30", "remaining_time": "9:37:08"} +{"current_steps": 206, "total_steps": 3633, "loss": 0.9252, "learning_rate": 3.978240710113919e-05, "epoch": 0.05669854813183789, "percentage": 5.67, "elapsed_time": "0:34:40", "remaining_time": "9:36:57"} +{"current_steps": 207, "total_steps": 3633, "loss": 0.9628, "learning_rate": 3.977982916771408e-05, "epoch": 0.05697378380238079, "percentage": 5.7, "elapsed_time": "0:34:50", "remaining_time": "9:36:45"} +{"current_steps": 208, "total_steps": 3633, "loss": 0.9351, "learning_rate": 3.977723613755897e-05, "epoch": 0.05724901947292369, "percentage": 5.73, "elapsed_time": "0:35:00", "remaining_time": "9:36:34"} +{"current_steps": 209, "total_steps": 3633, "loss": 0.9026, "learning_rate": 3.9774628012652965e-05, "epoch": 0.057524255143466596, "percentage": 5.75, "elapsed_time": "0:35:10", "remaining_time": "9:36:23"} +{"current_steps": 210, "total_steps": 3633, "loss": 0.9052, "learning_rate": 3.9772004794986665e-05, "epoch": 0.057799490814009494, "percentage": 5.78, "elapsed_time": "0:35:21", "remaining_time": "9:36:12"} +{"current_steps": 211, "total_steps": 3633, "loss": 0.8964, "learning_rate": 3.976936648656223e-05, "epoch": 0.0580747264845524, "percentage": 5.81, "elapsed_time": "0:35:31", "remaining_time": "9:36:01"} +{"current_steps": 212, "total_steps": 3633, "loss": 0.9051, "learning_rate": 3.976671308939331e-05, "epoch": 0.0583499621550953, "percentage": 5.84, "elapsed_time": "0:35:41", "remaining_time": "9:35:50"} +{"current_steps": 213, "total_steps": 3633, "loss": 0.8621, "learning_rate": 3.976404460550509e-05, "epoch": 0.0586251978256382, "percentage": 5.86, "elapsed_time": "0:35:51", "remaining_time": "9:35:40"} +{"current_steps": 214, "total_steps": 3633, "loss": 0.9111, "learning_rate": 3.976136103693424e-05, "epoch": 0.058900433496181105, "percentage": 5.89, "elapsed_time": "0:36:01", "remaining_time": "9:35:30"} +{"current_steps": 215, "total_steps": 3633, "loss": 0.9366, "learning_rate": 3.9758662385728984e-05, "epoch": 0.05917566916672401, "percentage": 5.92, "elapsed_time": "0:36:11", "remaining_time": "9:35:19"} +{"current_steps": 216, "total_steps": 3633, "loss": 0.9537, "learning_rate": 3.975594865394903e-05, "epoch": 0.05945090483726691, "percentage": 5.95, "elapsed_time": "0:36:21", "remaining_time": "9:35:08"} +{"current_steps": 217, "total_steps": 3633, "loss": 0.9362, "learning_rate": 3.97532198436656e-05, "epoch": 0.05972614050780981, "percentage": 5.97, "elapsed_time": "0:36:31", "remaining_time": "9:34:58"} +{"current_steps": 218, "total_steps": 3633, "loss": 0.9437, "learning_rate": 3.975047595696142e-05, "epoch": 0.06000137617835272, "percentage": 6.0, "elapsed_time": "0:36:41", "remaining_time": "9:34:47"} +{"current_steps": 219, "total_steps": 3633, "loss": 0.9515, "learning_rate": 3.974771699593076e-05, "epoch": 0.060276611848895614, "percentage": 6.03, "elapsed_time": "0:36:51", "remaining_time": "9:34:37"} +{"current_steps": 220, "total_steps": 3633, "loss": 0.9137, "learning_rate": 3.974494296267933e-05, "epoch": 0.06055184751943852, "percentage": 6.06, "elapsed_time": "0:37:01", "remaining_time": "9:34:26"} +{"current_steps": 221, "total_steps": 3633, "loss": 0.9477, "learning_rate": 3.9742153859324403e-05, "epoch": 0.060827083189981423, "percentage": 6.08, "elapsed_time": "0:37:11", "remaining_time": "9:34:15"} +{"current_steps": 222, "total_steps": 3633, "loss": 0.9404, "learning_rate": 3.9739349687994713e-05, "epoch": 0.06110231886052432, "percentage": 6.11, "elapsed_time": "0:37:21", "remaining_time": "9:34:05"} +{"current_steps": 223, "total_steps": 3633, "loss": 0.9442, "learning_rate": 3.9736530450830525e-05, "epoch": 0.061377554531067226, "percentage": 6.14, "elapsed_time": "0:37:31", "remaining_time": "9:33:54"} +{"current_steps": 224, "total_steps": 3633, "loss": 0.9379, "learning_rate": 3.9733696149983586e-05, "epoch": 0.06165279020161013, "percentage": 6.17, "elapsed_time": "0:37:41", "remaining_time": "9:33:43"} +{"current_steps": 225, "total_steps": 3633, "loss": 0.9649, "learning_rate": 3.9730846787617145e-05, "epoch": 0.06192802587215303, "percentage": 6.19, "elapsed_time": "0:37:51", "remaining_time": "9:33:32"} +{"current_steps": 226, "total_steps": 3633, "loss": 0.8936, "learning_rate": 3.972798236590595e-05, "epoch": 0.06220326154269593, "percentage": 6.22, "elapsed_time": "0:38:01", "remaining_time": "9:33:21"} +{"current_steps": 227, "total_steps": 3633, "loss": 0.9227, "learning_rate": 3.972510288703622e-05, "epoch": 0.06247849721323884, "percentage": 6.25, "elapsed_time": "0:38:11", "remaining_time": "9:33:09"} +{"current_steps": 228, "total_steps": 3633, "loss": 0.9552, "learning_rate": 3.9722208353205704e-05, "epoch": 0.06275373288378173, "percentage": 6.28, "elapsed_time": "0:38:21", "remaining_time": "9:32:57"} +{"current_steps": 229, "total_steps": 3633, "loss": 0.9431, "learning_rate": 3.9719298766623614e-05, "epoch": 0.06302896855432465, "percentage": 6.3, "elapsed_time": "0:38:31", "remaining_time": "9:32:46"} +{"current_steps": 230, "total_steps": 3633, "loss": 0.9257, "learning_rate": 3.971637412951066e-05, "epoch": 0.06330420422486754, "percentage": 6.33, "elapsed_time": "0:38:42", "remaining_time": "9:32:36"} +{"current_steps": 231, "total_steps": 3633, "loss": 0.9324, "learning_rate": 3.971343444409904e-05, "epoch": 0.06357943989541044, "percentage": 6.36, "elapsed_time": "0:38:52", "remaining_time": "9:32:25"} +{"current_steps": 232, "total_steps": 3633, "loss": 0.9298, "learning_rate": 3.9710479712632435e-05, "epoch": 0.06385467556595335, "percentage": 6.39, "elapsed_time": "0:39:02", "remaining_time": "9:32:15"} +{"current_steps": 233, "total_steps": 3633, "loss": 0.9234, "learning_rate": 3.9707509937366006e-05, "epoch": 0.06412991123649625, "percentage": 6.41, "elapsed_time": "0:39:12", "remaining_time": "9:32:04"} +{"current_steps": 234, "total_steps": 3633, "loss": 0.899, "learning_rate": 3.9704525120566406e-05, "epoch": 0.06440514690703915, "percentage": 6.44, "elapsed_time": "0:39:22", "remaining_time": "9:31:53"} +{"current_steps": 235, "total_steps": 3633, "loss": 0.922, "learning_rate": 3.970152526451176e-05, "epoch": 0.06468038257758206, "percentage": 6.47, "elapsed_time": "0:39:32", "remaining_time": "9:31:42"} +{"current_steps": 236, "total_steps": 3633, "loss": 0.9206, "learning_rate": 3.969851037149167e-05, "epoch": 0.06495561824812496, "percentage": 6.5, "elapsed_time": "0:39:42", "remaining_time": "9:31:32"} +{"current_steps": 237, "total_steps": 3633, "loss": 0.8914, "learning_rate": 3.969548044380722e-05, "epoch": 0.06523085391866786, "percentage": 6.52, "elapsed_time": "0:39:52", "remaining_time": "9:31:21"} +{"current_steps": 238, "total_steps": 3633, "loss": 0.95, "learning_rate": 3.969243548377098e-05, "epoch": 0.06550608958921077, "percentage": 6.55, "elapsed_time": "0:40:02", "remaining_time": "9:31:11"} +{"current_steps": 239, "total_steps": 3633, "loss": 0.9259, "learning_rate": 3.968937549370696e-05, "epoch": 0.06578132525975366, "percentage": 6.58, "elapsed_time": "0:40:12", "remaining_time": "9:31:00"} +{"current_steps": 240, "total_steps": 3633, "loss": 0.9126, "learning_rate": 3.9686300475950686e-05, "epoch": 0.06605656093029656, "percentage": 6.61, "elapsed_time": "0:40:22", "remaining_time": "9:30:50"} +{"current_steps": 241, "total_steps": 3633, "loss": 0.9198, "learning_rate": 3.968321043284912e-05, "epoch": 0.06633179660083947, "percentage": 6.63, "elapsed_time": "0:40:32", "remaining_time": "9:30:40"} +{"current_steps": 242, "total_steps": 3633, "loss": 0.9122, "learning_rate": 3.9680105366760686e-05, "epoch": 0.06660703227138237, "percentage": 6.66, "elapsed_time": "0:40:42", "remaining_time": "9:30:29"} +{"current_steps": 243, "total_steps": 3633, "loss": 0.9172, "learning_rate": 3.9676985280055315e-05, "epoch": 0.06688226794192527, "percentage": 6.69, "elapsed_time": "0:40:52", "remaining_time": "9:30:19"} +{"current_steps": 244, "total_steps": 3633, "loss": 0.9318, "learning_rate": 3.9673850175114375e-05, "epoch": 0.06715750361246818, "percentage": 6.72, "elapsed_time": "0:41:02", "remaining_time": "9:30:08"} +{"current_steps": 245, "total_steps": 3633, "loss": 0.9428, "learning_rate": 3.9670700054330685e-05, "epoch": 0.06743273928301108, "percentage": 6.74, "elapsed_time": "0:41:13", "remaining_time": "9:29:58"} +{"current_steps": 246, "total_steps": 3633, "loss": 0.9142, "learning_rate": 3.9667534920108545e-05, "epoch": 0.06770797495355398, "percentage": 6.77, "elapsed_time": "0:41:23", "remaining_time": "9:29:47"} +{"current_steps": 247, "total_steps": 3633, "loss": 0.9186, "learning_rate": 3.966435477486371e-05, "epoch": 0.06798321062409689, "percentage": 6.8, "elapsed_time": "0:41:33", "remaining_time": "9:29:36"} +{"current_steps": 248, "total_steps": 3633, "loss": 0.926, "learning_rate": 3.966115962102339e-05, "epoch": 0.06825844629463979, "percentage": 6.83, "elapsed_time": "0:41:43", "remaining_time": "9:29:26"} +{"current_steps": 249, "total_steps": 3633, "loss": 0.913, "learning_rate": 3.965794946102625e-05, "epoch": 0.06853368196518268, "percentage": 6.85, "elapsed_time": "0:41:53", "remaining_time": "9:29:14"} +{"current_steps": 250, "total_steps": 3633, "loss": 0.9264, "learning_rate": 3.9654724297322406e-05, "epoch": 0.0688089176357256, "percentage": 6.88, "elapsed_time": "0:42:03", "remaining_time": "9:29:03"} +{"current_steps": 251, "total_steps": 3633, "loss": 0.9296, "learning_rate": 3.965148413237342e-05, "epoch": 0.06908415330626849, "percentage": 6.91, "elapsed_time": "0:42:13", "remaining_time": "9:28:53"} +{"current_steps": 252, "total_steps": 3633, "loss": 0.9117, "learning_rate": 3.964822896865234e-05, "epoch": 0.06935938897681139, "percentage": 6.94, "elapsed_time": "0:42:23", "remaining_time": "9:28:42"} +{"current_steps": 253, "total_steps": 3633, "loss": 0.9111, "learning_rate": 3.96449588086436e-05, "epoch": 0.0696346246473543, "percentage": 6.96, "elapsed_time": "0:42:33", "remaining_time": "9:28:31"} +{"current_steps": 254, "total_steps": 3633, "loss": 0.8903, "learning_rate": 3.964167365484312e-05, "epoch": 0.0699098603178972, "percentage": 6.99, "elapsed_time": "0:42:43", "remaining_time": "9:28:20"} +{"current_steps": 255, "total_steps": 3633, "loss": 0.9083, "learning_rate": 3.9638373509758274e-05, "epoch": 0.0701850959884401, "percentage": 7.02, "elapsed_time": "0:42:53", "remaining_time": "9:28:08"} +{"current_steps": 256, "total_steps": 3633, "loss": 0.9502, "learning_rate": 3.9635058375907836e-05, "epoch": 0.07046033165898301, "percentage": 7.05, "elapsed_time": "0:43:03", "remaining_time": "9:27:57"} +{"current_steps": 257, "total_steps": 3633, "loss": 0.9124, "learning_rate": 3.963172825582206e-05, "epoch": 0.0707355673295259, "percentage": 7.07, "elapsed_time": "0:43:13", "remaining_time": "9:27:47"} +{"current_steps": 258, "total_steps": 3633, "loss": 0.9242, "learning_rate": 3.962838315204262e-05, "epoch": 0.0710108030000688, "percentage": 7.1, "elapsed_time": "0:43:23", "remaining_time": "9:27:37"} +{"current_steps": 259, "total_steps": 3633, "loss": 0.9436, "learning_rate": 3.962502306712263e-05, "epoch": 0.07128603867061171, "percentage": 7.13, "elapsed_time": "0:43:33", "remaining_time": "9:27:26"} +{"current_steps": 260, "total_steps": 3633, "loss": 0.94, "learning_rate": 3.962164800362662e-05, "epoch": 0.07156127434115461, "percentage": 7.16, "elapsed_time": "0:43:43", "remaining_time": "9:27:13"} +{"current_steps": 261, "total_steps": 3633, "loss": 0.894, "learning_rate": 3.961825796413059e-05, "epoch": 0.07183651001169751, "percentage": 7.18, "elapsed_time": "0:43:53", "remaining_time": "9:27:01"} +{"current_steps": 262, "total_steps": 3633, "loss": 0.9268, "learning_rate": 3.9614852951221945e-05, "epoch": 0.07211174568224042, "percentage": 7.21, "elapsed_time": "0:44:03", "remaining_time": "9:26:50"} +{"current_steps": 263, "total_steps": 3633, "loss": 0.9018, "learning_rate": 3.961143296749952e-05, "epoch": 0.07238698135278332, "percentage": 7.24, "elapsed_time": "0:44:13", "remaining_time": "9:26:39"} +{"current_steps": 264, "total_steps": 3633, "loss": 0.9271, "learning_rate": 3.960799801557357e-05, "epoch": 0.07266221702332622, "percentage": 7.27, "elapsed_time": "0:44:23", "remaining_time": "9:26:28"} +{"current_steps": 265, "total_steps": 3633, "loss": 0.9009, "learning_rate": 3.9604548098065796e-05, "epoch": 0.07293745269386913, "percentage": 7.29, "elapsed_time": "0:44:33", "remaining_time": "9:26:17"} +{"current_steps": 266, "total_steps": 3633, "loss": 0.9095, "learning_rate": 3.96010832176093e-05, "epoch": 0.07321268836441203, "percentage": 7.32, "elapsed_time": "0:44:43", "remaining_time": "9:26:05"} +{"current_steps": 267, "total_steps": 3633, "loss": 0.9525, "learning_rate": 3.9597603376848614e-05, "epoch": 0.07348792403495492, "percentage": 7.35, "elapsed_time": "0:44:53", "remaining_time": "9:25:55"} +{"current_steps": 268, "total_steps": 3633, "loss": 0.9357, "learning_rate": 3.959410857843969e-05, "epoch": 0.07376315970549784, "percentage": 7.38, "elapsed_time": "0:45:03", "remaining_time": "9:25:44"} +{"current_steps": 269, "total_steps": 3633, "loss": 0.9052, "learning_rate": 3.9590598825049896e-05, "epoch": 0.07403839537604073, "percentage": 7.4, "elapsed_time": "0:45:13", "remaining_time": "9:25:33"} +{"current_steps": 270, "total_steps": 3633, "loss": 0.9029, "learning_rate": 3.9587074119358e-05, "epoch": 0.07431363104658363, "percentage": 7.43, "elapsed_time": "0:45:23", "remaining_time": "9:25:22"} +{"current_steps": 271, "total_steps": 3633, "loss": 0.9308, "learning_rate": 3.95835344640542e-05, "epoch": 0.07458886671712654, "percentage": 7.46, "elapsed_time": "0:45:33", "remaining_time": "9:25:10"} +{"current_steps": 272, "total_steps": 3633, "loss": 0.9143, "learning_rate": 3.957997986184011e-05, "epoch": 0.07486410238766944, "percentage": 7.49, "elapsed_time": "0:45:43", "remaining_time": "9:24:59"} +{"current_steps": 273, "total_steps": 3633, "loss": 0.9235, "learning_rate": 3.957641031542872e-05, "epoch": 0.07513933805821234, "percentage": 7.51, "elapsed_time": "0:45:53", "remaining_time": "9:24:49"} +{"current_steps": 274, "total_steps": 3633, "loss": 0.9134, "learning_rate": 3.957282582754445e-05, "epoch": 0.07541457372875525, "percentage": 7.54, "elapsed_time": "0:46:03", "remaining_time": "9:24:38"} +{"current_steps": 275, "total_steps": 3633, "loss": 0.9126, "learning_rate": 3.9569226400923135e-05, "epoch": 0.07568980939929815, "percentage": 7.57, "elapsed_time": "0:46:13", "remaining_time": "9:24:27"} +{"current_steps": 276, "total_steps": 3633, "loss": 0.8906, "learning_rate": 3.956561203831198e-05, "epoch": 0.07596504506984104, "percentage": 7.6, "elapsed_time": "0:46:23", "remaining_time": "9:24:16"} +{"current_steps": 277, "total_steps": 3633, "loss": 0.9171, "learning_rate": 3.9561982742469606e-05, "epoch": 0.07624028074038396, "percentage": 7.62, "elapsed_time": "0:46:33", "remaining_time": "9:24:05"} +{"current_steps": 278, "total_steps": 3633, "loss": 0.873, "learning_rate": 3.955833851616604e-05, "epoch": 0.07651551641092685, "percentage": 7.65, "elapsed_time": "0:46:43", "remaining_time": "9:23:55"} +{"current_steps": 279, "total_steps": 3633, "loss": 0.9046, "learning_rate": 3.95546793621827e-05, "epoch": 0.07679075208146977, "percentage": 7.68, "elapsed_time": "0:46:53", "remaining_time": "9:23:44"} +{"current_steps": 280, "total_steps": 3633, "loss": 0.8672, "learning_rate": 3.955100528331238e-05, "epoch": 0.07706598775201266, "percentage": 7.71, "elapsed_time": "0:47:03", "remaining_time": "9:23:34"} +{"current_steps": 281, "total_steps": 3633, "loss": 0.9448, "learning_rate": 3.9547316282359284e-05, "epoch": 0.07734122342255556, "percentage": 7.73, "elapsed_time": "0:47:13", "remaining_time": "9:23:24"} +{"current_steps": 282, "total_steps": 3633, "loss": 0.9118, "learning_rate": 3.954361236213901e-05, "epoch": 0.07761645909309847, "percentage": 7.76, "elapsed_time": "0:47:23", "remaining_time": "9:23:13"} +{"current_steps": 283, "total_steps": 3633, "loss": 0.9099, "learning_rate": 3.9539893525478524e-05, "epoch": 0.07789169476364137, "percentage": 7.79, "elapsed_time": "0:47:33", "remaining_time": "9:23:03"} +{"current_steps": 284, "total_steps": 3633, "loss": 0.9096, "learning_rate": 3.9536159775216185e-05, "epoch": 0.07816693043418427, "percentage": 7.82, "elapsed_time": "0:47:43", "remaining_time": "9:22:52"} +{"current_steps": 285, "total_steps": 3633, "loss": 0.9365, "learning_rate": 3.953241111420174e-05, "epoch": 0.07844216610472718, "percentage": 7.84, "elapsed_time": "0:47:53", "remaining_time": "9:22:41"} +{"current_steps": 286, "total_steps": 3633, "loss": 0.9076, "learning_rate": 3.9528647545296306e-05, "epoch": 0.07871740177527008, "percentage": 7.87, "elapsed_time": "0:48:03", "remaining_time": "9:22:30"} +{"current_steps": 287, "total_steps": 3633, "loss": 0.9239, "learning_rate": 3.952486907137239e-05, "epoch": 0.07899263744581297, "percentage": 7.9, "elapsed_time": "0:48:13", "remaining_time": "9:22:19"} +{"current_steps": 288, "total_steps": 3633, "loss": 0.9181, "learning_rate": 3.9521075695313864e-05, "epoch": 0.07926787311635589, "percentage": 7.93, "elapsed_time": "0:48:24", "remaining_time": "9:22:09"} +{"current_steps": 289, "total_steps": 3633, "loss": 0.8923, "learning_rate": 3.951726742001599e-05, "epoch": 0.07954310878689878, "percentage": 7.95, "elapsed_time": "0:48:34", "remaining_time": "9:21:59"} +{"current_steps": 290, "total_steps": 3633, "loss": 0.9555, "learning_rate": 3.951344424838538e-05, "epoch": 0.07981834445744168, "percentage": 7.98, "elapsed_time": "0:48:44", "remaining_time": "9:21:48"} +{"current_steps": 291, "total_steps": 3633, "loss": 0.8874, "learning_rate": 3.9509606183340026e-05, "epoch": 0.08009358012798459, "percentage": 8.01, "elapsed_time": "0:48:54", "remaining_time": "9:21:38"} +{"current_steps": 292, "total_steps": 3633, "loss": 0.9089, "learning_rate": 3.950575322780929e-05, "epoch": 0.08036881579852749, "percentage": 8.04, "elapsed_time": "0:49:04", "remaining_time": "9:21:27"} +{"current_steps": 293, "total_steps": 3633, "loss": 0.909, "learning_rate": 3.9501885384733906e-05, "epoch": 0.08064405146907039, "percentage": 8.06, "elapsed_time": "0:49:14", "remaining_time": "9:21:16"} +{"current_steps": 294, "total_steps": 3633, "loss": 0.8704, "learning_rate": 3.949800265706595e-05, "epoch": 0.0809192871396133, "percentage": 8.09, "elapsed_time": "0:49:24", "remaining_time": "9:21:06"} +{"current_steps": 295, "total_steps": 3633, "loss": 0.8886, "learning_rate": 3.949410504776887e-05, "epoch": 0.0811945228101562, "percentage": 8.12, "elapsed_time": "0:49:34", "remaining_time": "9:20:56"} +{"current_steps": 296, "total_steps": 3633, "loss": 0.942, "learning_rate": 3.949019255981747e-05, "epoch": 0.0814697584806991, "percentage": 8.15, "elapsed_time": "0:49:44", "remaining_time": "9:20:45"} +{"current_steps": 297, "total_steps": 3633, "loss": 0.908, "learning_rate": 3.948626519619793e-05, "epoch": 0.081744994151242, "percentage": 8.18, "elapsed_time": "0:49:54", "remaining_time": "9:20:34"} +{"current_steps": 298, "total_steps": 3633, "loss": 0.8947, "learning_rate": 3.9482322959907745e-05, "epoch": 0.0820202298217849, "percentage": 8.2, "elapsed_time": "0:50:04", "remaining_time": "9:20:22"} +{"current_steps": 299, "total_steps": 3633, "loss": 0.8896, "learning_rate": 3.947836585395579e-05, "epoch": 0.0822954654923278, "percentage": 8.23, "elapsed_time": "0:50:14", "remaining_time": "9:20:12"} +{"current_steps": 300, "total_steps": 3633, "loss": 0.9279, "learning_rate": 3.947439388136228e-05, "epoch": 0.08257070116287071, "percentage": 8.26, "elapsed_time": "0:50:24", "remaining_time": "9:20:02"} +{"current_steps": 301, "total_steps": 3633, "loss": 0.9121, "learning_rate": 3.947040704515878e-05, "epoch": 0.08284593683341361, "percentage": 8.29, "elapsed_time": "0:50:34", "remaining_time": "9:19:51"} +{"current_steps": 302, "total_steps": 3633, "loss": 0.9493, "learning_rate": 3.94664053483882e-05, "epoch": 0.08312117250395651, "percentage": 8.31, "elapsed_time": "0:50:44", "remaining_time": "9:19:40"} +{"current_steps": 303, "total_steps": 3633, "loss": 0.9029, "learning_rate": 3.946238879410478e-05, "epoch": 0.08339640817449942, "percentage": 8.34, "elapsed_time": "0:50:54", "remaining_time": "9:19:28"} +{"current_steps": 304, "total_steps": 3633, "loss": 0.9092, "learning_rate": 3.9458357385374116e-05, "epoch": 0.08367164384504232, "percentage": 8.37, "elapsed_time": "0:51:04", "remaining_time": "9:19:18"} +{"current_steps": 305, "total_steps": 3633, "loss": 0.964, "learning_rate": 3.945431112527314e-05, "epoch": 0.08394687951558522, "percentage": 8.4, "elapsed_time": "0:51:14", "remaining_time": "9:19:07"} +{"current_steps": 306, "total_steps": 3633, "loss": 0.903, "learning_rate": 3.94502500168901e-05, "epoch": 0.08422211518612813, "percentage": 8.42, "elapsed_time": "0:51:24", "remaining_time": "9:18:57"} +{"current_steps": 307, "total_steps": 3633, "loss": 0.8853, "learning_rate": 3.944617406332461e-05, "epoch": 0.08449735085667102, "percentage": 8.45, "elapsed_time": "0:51:34", "remaining_time": "9:18:46"} +{"current_steps": 308, "total_steps": 3633, "loss": 0.911, "learning_rate": 3.944208326768758e-05, "epoch": 0.08477258652721392, "percentage": 8.48, "elapsed_time": "0:51:44", "remaining_time": "9:18:34"} +{"current_steps": 309, "total_steps": 3633, "loss": 0.8833, "learning_rate": 3.9437977633101266e-05, "epoch": 0.08504782219775683, "percentage": 8.51, "elapsed_time": "0:51:54", "remaining_time": "9:18:23"} +{"current_steps": 310, "total_steps": 3633, "loss": 0.8645, "learning_rate": 3.9433857162699245e-05, "epoch": 0.08532305786829973, "percentage": 8.53, "elapsed_time": "0:52:04", "remaining_time": "9:18:13"} +{"current_steps": 311, "total_steps": 3633, "loss": 0.8982, "learning_rate": 3.9429721859626434e-05, "epoch": 0.08559829353884263, "percentage": 8.56, "elapsed_time": "0:52:14", "remaining_time": "9:18:02"} +{"current_steps": 312, "total_steps": 3633, "loss": 0.8764, "learning_rate": 3.942557172703903e-05, "epoch": 0.08587352920938554, "percentage": 8.59, "elapsed_time": "0:52:24", "remaining_time": "9:17:52"} +{"current_steps": 313, "total_steps": 3633, "loss": 0.8854, "learning_rate": 3.94214067681046e-05, "epoch": 0.08614876487992844, "percentage": 8.62, "elapsed_time": "0:52:34", "remaining_time": "9:17:42"} +{"current_steps": 314, "total_steps": 3633, "loss": 0.9025, "learning_rate": 3.9417226986001994e-05, "epoch": 0.08642400055047134, "percentage": 8.64, "elapsed_time": "0:52:44", "remaining_time": "9:17:31"} +{"current_steps": 315, "total_steps": 3633, "loss": 0.8537, "learning_rate": 3.9413032383921374e-05, "epoch": 0.08669923622101425, "percentage": 8.67, "elapsed_time": "0:52:54", "remaining_time": "9:17:20"} +{"current_steps": 316, "total_steps": 3633, "loss": 0.9179, "learning_rate": 3.940882296506423e-05, "epoch": 0.08697447189155715, "percentage": 8.7, "elapsed_time": "0:53:04", "remaining_time": "9:17:08"} +{"current_steps": 317, "total_steps": 3633, "loss": 0.9182, "learning_rate": 3.940459873264336e-05, "epoch": 0.08724970756210004, "percentage": 8.73, "elapsed_time": "0:53:14", "remaining_time": "9:16:58"} +{"current_steps": 318, "total_steps": 3633, "loss": 0.8827, "learning_rate": 3.940035968988284e-05, "epoch": 0.08752494323264295, "percentage": 8.75, "elapsed_time": "0:53:24", "remaining_time": "9:16:47"} +{"current_steps": 319, "total_steps": 3633, "loss": 0.9102, "learning_rate": 3.939610584001809e-05, "epoch": 0.08780017890318585, "percentage": 8.78, "elapsed_time": "0:53:34", "remaining_time": "9:16:36"} +{"current_steps": 320, "total_steps": 3633, "loss": 0.8915, "learning_rate": 3.9391837186295816e-05, "epoch": 0.08807541457372875, "percentage": 8.81, "elapsed_time": "0:53:44", "remaining_time": "9:16:25"} +{"current_steps": 321, "total_steps": 3633, "loss": 0.8849, "learning_rate": 3.9387553731974e-05, "epoch": 0.08835065024427166, "percentage": 8.84, "elapsed_time": "0:53:54", "remaining_time": "9:16:14"} +{"current_steps": 322, "total_steps": 3633, "loss": 0.896, "learning_rate": 3.9383255480321955e-05, "epoch": 0.08862588591481456, "percentage": 8.86, "elapsed_time": "0:54:04", "remaining_time": "9:16:04"} +{"current_steps": 323, "total_steps": 3633, "loss": 0.894, "learning_rate": 3.937894243462027e-05, "epoch": 0.08890112158535746, "percentage": 8.89, "elapsed_time": "0:54:14", "remaining_time": "9:15:53"} +{"current_steps": 324, "total_steps": 3633, "loss": 0.9165, "learning_rate": 3.937461459816082e-05, "epoch": 0.08917635725590037, "percentage": 8.92, "elapsed_time": "0:54:24", "remaining_time": "9:15:42"} +{"current_steps": 325, "total_steps": 3633, "loss": 0.901, "learning_rate": 3.937027197424679e-05, "epoch": 0.08945159292644327, "percentage": 8.95, "elapsed_time": "0:54:34", "remaining_time": "9:15:31"} +{"current_steps": 326, "total_steps": 3633, "loss": 0.8753, "learning_rate": 3.9365914566192635e-05, "epoch": 0.08972682859698616, "percentage": 8.97, "elapsed_time": "0:54:44", "remaining_time": "9:15:21"} +{"current_steps": 327, "total_steps": 3633, "loss": 0.9088, "learning_rate": 3.936154237732409e-05, "epoch": 0.09000206426752907, "percentage": 9.0, "elapsed_time": "0:54:54", "remaining_time": "9:15:11"} +{"current_steps": 328, "total_steps": 3633, "loss": 0.9084, "learning_rate": 3.9357155410978184e-05, "epoch": 0.09027729993807197, "percentage": 9.03, "elapsed_time": "0:55:04", "remaining_time": "9:15:00"} +{"current_steps": 329, "total_steps": 3633, "loss": 0.9227, "learning_rate": 3.9352753670503216e-05, "epoch": 0.09055253560861487, "percentage": 9.06, "elapsed_time": "0:55:14", "remaining_time": "9:14:50"} +{"current_steps": 330, "total_steps": 3633, "loss": 0.8739, "learning_rate": 3.934833715925877e-05, "epoch": 0.09082777127915778, "percentage": 9.08, "elapsed_time": "0:55:25", "remaining_time": "9:14:40"} +{"current_steps": 331, "total_steps": 3633, "loss": 0.8905, "learning_rate": 3.934390588061569e-05, "epoch": 0.09110300694970068, "percentage": 9.11, "elapsed_time": "0:55:35", "remaining_time": "9:14:30"} +{"current_steps": 332, "total_steps": 3633, "loss": 0.8986, "learning_rate": 3.933945983795611e-05, "epoch": 0.09137824262024358, "percentage": 9.14, "elapsed_time": "0:55:45", "remaining_time": "9:14:20"} +{"current_steps": 333, "total_steps": 3633, "loss": 0.9203, "learning_rate": 3.933499903467341e-05, "epoch": 0.09165347829078649, "percentage": 9.17, "elapsed_time": "0:55:55", "remaining_time": "9:14:10"} +{"current_steps": 334, "total_steps": 3633, "loss": 0.9331, "learning_rate": 3.933052347417225e-05, "epoch": 0.09192871396132939, "percentage": 9.19, "elapsed_time": "0:56:05", "remaining_time": "9:13:59"} +{"current_steps": 335, "total_steps": 3633, "loss": 0.8583, "learning_rate": 3.932603315986856e-05, "epoch": 0.09220394963187228, "percentage": 9.22, "elapsed_time": "0:56:15", "remaining_time": "9:13:49"} +{"current_steps": 336, "total_steps": 3633, "loss": 0.8843, "learning_rate": 3.932152809518951e-05, "epoch": 0.0924791853024152, "percentage": 9.25, "elapsed_time": "0:56:25", "remaining_time": "9:13:39"} +{"current_steps": 337, "total_steps": 3633, "loss": 0.9146, "learning_rate": 3.931700828357355e-05, "epoch": 0.0927544209729581, "percentage": 9.28, "elapsed_time": "0:56:35", "remaining_time": "9:13:29"} +{"current_steps": 338, "total_steps": 3633, "loss": 0.8909, "learning_rate": 3.9312473728470364e-05, "epoch": 0.09302965664350099, "percentage": 9.3, "elapsed_time": "0:56:45", "remaining_time": "9:13:18"} +{"current_steps": 339, "total_steps": 3633, "loss": 0.9228, "learning_rate": 3.9307924433340906e-05, "epoch": 0.0933048923140439, "percentage": 9.33, "elapsed_time": "0:56:55", "remaining_time": "9:13:08"} +{"current_steps": 340, "total_steps": 3633, "loss": 0.8727, "learning_rate": 3.930336040165738e-05, "epoch": 0.0935801279845868, "percentage": 9.36, "elapsed_time": "0:57:05", "remaining_time": "9:12:58"} +{"current_steps": 341, "total_steps": 3633, "loss": 0.9092, "learning_rate": 3.9298781636903215e-05, "epoch": 0.09385536365512971, "percentage": 9.39, "elapsed_time": "0:57:15", "remaining_time": "9:12:47"} +{"current_steps": 342, "total_steps": 3633, "loss": 0.8966, "learning_rate": 3.929418814257311e-05, "epoch": 0.09413059932567261, "percentage": 9.41, "elapsed_time": "0:57:25", "remaining_time": "9:12:37"} +{"current_steps": 343, "total_steps": 3633, "loss": 0.896, "learning_rate": 3.9289579922173e-05, "epoch": 0.0944058349962155, "percentage": 9.44, "elapsed_time": "0:57:35", "remaining_time": "9:12:28"} +{"current_steps": 344, "total_steps": 3633, "loss": 0.8968, "learning_rate": 3.9284956979220056e-05, "epoch": 0.09468107066675842, "percentage": 9.47, "elapsed_time": "0:57:45", "remaining_time": "9:12:18"} +{"current_steps": 345, "total_steps": 3633, "loss": 0.9246, "learning_rate": 3.928031931724269e-05, "epoch": 0.09495630633730132, "percentage": 9.5, "elapsed_time": "0:57:56", "remaining_time": "9:12:08"} +{"current_steps": 346, "total_steps": 3633, "loss": 0.8796, "learning_rate": 3.927566693978053e-05, "epoch": 0.09523154200784421, "percentage": 9.52, "elapsed_time": "0:58:06", "remaining_time": "9:11:57"} +{"current_steps": 347, "total_steps": 3633, "loss": 0.9042, "learning_rate": 3.927099985038446e-05, "epoch": 0.09550677767838713, "percentage": 9.55, "elapsed_time": "0:58:16", "remaining_time": "9:11:47"} +{"current_steps": 348, "total_steps": 3633, "loss": 0.897, "learning_rate": 3.926631805261659e-05, "epoch": 0.09578201334893002, "percentage": 9.58, "elapsed_time": "0:58:26", "remaining_time": "9:11:36"} +{"current_steps": 349, "total_steps": 3633, "loss": 0.8695, "learning_rate": 3.926162155005024e-05, "epoch": 0.09605724901947292, "percentage": 9.61, "elapsed_time": "0:58:36", "remaining_time": "9:11:26"} +{"current_steps": 350, "total_steps": 3633, "loss": 0.8927, "learning_rate": 3.925691034626997e-05, "epoch": 0.09633248469001583, "percentage": 9.63, "elapsed_time": "0:58:46", "remaining_time": "9:11:16"} +{"current_steps": 351, "total_steps": 3633, "loss": 0.9128, "learning_rate": 3.925218444487154e-05, "epoch": 0.09660772036055873, "percentage": 9.66, "elapsed_time": "0:58:56", "remaining_time": "9:11:05"} +{"current_steps": 352, "total_steps": 3633, "loss": 0.8551, "learning_rate": 3.924744384946195e-05, "epoch": 0.09688295603110163, "percentage": 9.69, "elapsed_time": "0:59:06", "remaining_time": "9:10:55"} +{"current_steps": 353, "total_steps": 3633, "loss": 0.8996, "learning_rate": 3.9242688563659406e-05, "epoch": 0.09715819170164454, "percentage": 9.72, "elapsed_time": "0:59:16", "remaining_time": "9:10:44"} +{"current_steps": 354, "total_steps": 3633, "loss": 0.8713, "learning_rate": 3.923791859109332e-05, "epoch": 0.09743342737218744, "percentage": 9.74, "elapsed_time": "0:59:26", "remaining_time": "9:10:35"} +{"current_steps": 355, "total_steps": 3633, "loss": 0.9132, "learning_rate": 3.923313393540433e-05, "epoch": 0.09770866304273033, "percentage": 9.77, "elapsed_time": "0:59:36", "remaining_time": "9:10:25"} +{"current_steps": 356, "total_steps": 3633, "loss": 0.9018, "learning_rate": 3.922833460024425e-05, "epoch": 0.09798389871327325, "percentage": 9.8, "elapsed_time": "0:59:46", "remaining_time": "9:10:14"} +{"current_steps": 357, "total_steps": 3633, "loss": 0.8537, "learning_rate": 3.922352058927614e-05, "epoch": 0.09825913438381614, "percentage": 9.83, "elapsed_time": "0:59:56", "remaining_time": "9:10:05"} +{"current_steps": 358, "total_steps": 3633, "loss": 0.881, "learning_rate": 3.921869190617423e-05, "epoch": 0.09853437005435904, "percentage": 9.85, "elapsed_time": "1:00:06", "remaining_time": "9:09:55"} +{"current_steps": 359, "total_steps": 3633, "loss": 0.8769, "learning_rate": 3.921384855462396e-05, "epoch": 0.09880960572490195, "percentage": 9.88, "elapsed_time": "1:00:16", "remaining_time": "9:09:44"} +{"current_steps": 360, "total_steps": 3633, "loss": 0.8736, "learning_rate": 3.920899053832195e-05, "epoch": 0.09908484139544485, "percentage": 9.91, "elapsed_time": "1:00:26", "remaining_time": "9:09:34"} +{"current_steps": 361, "total_steps": 3633, "loss": 0.8566, "learning_rate": 3.920411786097605e-05, "epoch": 0.09936007706598775, "percentage": 9.94, "elapsed_time": "1:00:36", "remaining_time": "9:09:24"} +{"current_steps": 362, "total_steps": 3633, "loss": 0.8874, "learning_rate": 3.919923052630526e-05, "epoch": 0.09963531273653066, "percentage": 9.96, "elapsed_time": "1:00:47", "remaining_time": "9:09:14"} +{"current_steps": 363, "total_steps": 3633, "loss": 0.9135, "learning_rate": 3.9194328538039775e-05, "epoch": 0.09991054840707356, "percentage": 9.99, "elapsed_time": "1:00:57", "remaining_time": "9:09:03"} +{"current_steps": 364, "total_steps": 3633, "loss": 0.8642, "learning_rate": 3.9189411899921e-05, "epoch": 0.10018578407761645, "percentage": 10.02, "elapsed_time": "1:01:07", "remaining_time": "9:08:53"} +{"current_steps": 365, "total_steps": 3633, "loss": 0.898, "learning_rate": 3.9184480615701496e-05, "epoch": 0.10046101974815937, "percentage": 10.05, "elapsed_time": "1:01:17", "remaining_time": "9:08:42"} +{"current_steps": 366, "total_steps": 3633, "loss": 0.8849, "learning_rate": 3.917953468914501e-05, "epoch": 0.10073625541870226, "percentage": 10.07, "elapsed_time": "1:01:27", "remaining_time": "9:08:32"} +{"current_steps": 367, "total_steps": 3633, "loss": 0.8892, "learning_rate": 3.917457412402645e-05, "epoch": 0.10101149108924516, "percentage": 10.1, "elapsed_time": "1:01:37", "remaining_time": "9:08:22"} +{"current_steps": 368, "total_steps": 3633, "loss": 0.9121, "learning_rate": 3.916959892413194e-05, "epoch": 0.10128672675978807, "percentage": 10.13, "elapsed_time": "1:01:47", "remaining_time": "9:08:11"} +{"current_steps": 369, "total_steps": 3633, "loss": 0.8686, "learning_rate": 3.9164609093258726e-05, "epoch": 0.10156196243033097, "percentage": 10.16, "elapsed_time": "1:01:57", "remaining_time": "9:08:00"} +{"current_steps": 370, "total_steps": 3633, "loss": 0.8563, "learning_rate": 3.9159604635215236e-05, "epoch": 0.10183719810087387, "percentage": 10.18, "elapsed_time": "1:02:07", "remaining_time": "9:07:50"} +{"current_steps": 371, "total_steps": 3633, "loss": 0.8713, "learning_rate": 3.915458555382108e-05, "epoch": 0.10211243377141678, "percentage": 10.21, "elapsed_time": "1:02:17", "remaining_time": "9:07:40"} +{"current_steps": 372, "total_steps": 3633, "loss": 0.8955, "learning_rate": 3.9149551852907e-05, "epoch": 0.10238766944195968, "percentage": 10.24, "elapsed_time": "1:02:27", "remaining_time": "9:07:30"} +{"current_steps": 373, "total_steps": 3633, "loss": 0.9098, "learning_rate": 3.914450353631492e-05, "epoch": 0.10266290511250258, "percentage": 10.27, "elapsed_time": "1:02:37", "remaining_time": "9:07:19"} +{"current_steps": 374, "total_steps": 3633, "loss": 0.9084, "learning_rate": 3.913944060789791e-05, "epoch": 0.10293814078304549, "percentage": 10.29, "elapsed_time": "1:02:47", "remaining_time": "9:07:08"} +{"current_steps": 375, "total_steps": 3633, "loss": 0.8736, "learning_rate": 3.91343630715202e-05, "epoch": 0.10321337645358838, "percentage": 10.32, "elapsed_time": "1:02:57", "remaining_time": "9:06:58"} +{"current_steps": 376, "total_steps": 3633, "loss": 0.8706, "learning_rate": 3.912927093105714e-05, "epoch": 0.10348861212413128, "percentage": 10.35, "elapsed_time": "1:03:07", "remaining_time": "9:06:47"} +{"current_steps": 377, "total_steps": 3633, "loss": 0.8844, "learning_rate": 3.912416419039526e-05, "epoch": 0.1037638477946742, "percentage": 10.38, "elapsed_time": "1:03:17", "remaining_time": "9:06:36"} +{"current_steps": 378, "total_steps": 3633, "loss": 0.8811, "learning_rate": 3.911904285343224e-05, "epoch": 0.10403908346521709, "percentage": 10.4, "elapsed_time": "1:03:27", "remaining_time": "9:06:27"} +{"current_steps": 379, "total_steps": 3633, "loss": 0.8823, "learning_rate": 3.911390692407685e-05, "epoch": 0.10431431913575999, "percentage": 10.43, "elapsed_time": "1:03:37", "remaining_time": "9:06:17"} +{"current_steps": 380, "total_steps": 3633, "loss": 0.8732, "learning_rate": 3.910875640624905e-05, "epoch": 0.1045895548063029, "percentage": 10.46, "elapsed_time": "1:03:47", "remaining_time": "9:06:07"} +{"current_steps": 381, "total_steps": 3633, "loss": 0.8587, "learning_rate": 3.910359130387991e-05, "epoch": 0.1048647904768458, "percentage": 10.49, "elapsed_time": "1:03:57", "remaining_time": "9:05:56"} +{"current_steps": 382, "total_steps": 3633, "loss": 0.9026, "learning_rate": 3.909841162091164e-05, "epoch": 0.1051400261473887, "percentage": 10.51, "elapsed_time": "1:04:07", "remaining_time": "9:05:46"} +{"current_steps": 383, "total_steps": 3633, "loss": 0.8938, "learning_rate": 3.909321736129757e-05, "epoch": 0.10541526181793161, "percentage": 10.54, "elapsed_time": "1:04:17", "remaining_time": "9:05:36"} +{"current_steps": 384, "total_steps": 3633, "loss": 0.8786, "learning_rate": 3.908800852900215e-05, "epoch": 0.1056904974884745, "percentage": 10.57, "elapsed_time": "1:04:27", "remaining_time": "9:05:26"} +{"current_steps": 385, "total_steps": 3633, "loss": 0.8885, "learning_rate": 3.908278512800098e-05, "epoch": 0.1059657331590174, "percentage": 10.6, "elapsed_time": "1:04:38", "remaining_time": "9:05:16"} +{"current_steps": 386, "total_steps": 3633, "loss": 0.8749, "learning_rate": 3.9077547162280754e-05, "epoch": 0.10624096882956031, "percentage": 10.62, "elapsed_time": "1:04:48", "remaining_time": "9:05:05"} +{"current_steps": 387, "total_steps": 3633, "loss": 0.8723, "learning_rate": 3.907229463583928e-05, "epoch": 0.10651620450010321, "percentage": 10.65, "elapsed_time": "1:04:58", "remaining_time": "9:04:55"} +{"current_steps": 388, "total_steps": 3633, "loss": 0.8954, "learning_rate": 3.9067027552685506e-05, "epoch": 0.10679144017064611, "percentage": 10.68, "elapsed_time": "1:05:08", "remaining_time": "9:04:45"} +{"current_steps": 389, "total_steps": 3633, "loss": 0.8981, "learning_rate": 3.906174591683946e-05, "epoch": 0.10706667584118902, "percentage": 10.71, "elapsed_time": "1:05:18", "remaining_time": "9:04:35"} +{"current_steps": 390, "total_steps": 3633, "loss": 0.9131, "learning_rate": 3.90564497323323e-05, "epoch": 0.10734191151173192, "percentage": 10.73, "elapsed_time": "1:05:28", "remaining_time": "9:04:24"} +{"current_steps": 391, "total_steps": 3633, "loss": 0.895, "learning_rate": 3.905113900320627e-05, "epoch": 0.10761714718227482, "percentage": 10.76, "elapsed_time": "1:05:38", "remaining_time": "9:04:13"} +{"current_steps": 392, "total_steps": 3633, "loss": 0.8965, "learning_rate": 3.904581373351474e-05, "epoch": 0.10789238285281773, "percentage": 10.79, "elapsed_time": "1:05:48", "remaining_time": "9:04:03"} +{"current_steps": 393, "total_steps": 3633, "loss": 0.8802, "learning_rate": 3.9040473927322136e-05, "epoch": 0.10816761852336063, "percentage": 10.82, "elapsed_time": "1:05:58", "remaining_time": "9:03:52"} +{"current_steps": 394, "total_steps": 3633, "loss": 0.9175, "learning_rate": 3.9035119588704026e-05, "epoch": 0.10844285419390352, "percentage": 10.85, "elapsed_time": "1:06:08", "remaining_time": "9:03:42"} +{"current_steps": 395, "total_steps": 3633, "loss": 0.8742, "learning_rate": 3.902975072174704e-05, "epoch": 0.10871808986444643, "percentage": 10.87, "elapsed_time": "1:06:18", "remaining_time": "9:03:31"} +{"current_steps": 396, "total_steps": 3633, "loss": 0.8716, "learning_rate": 3.9024367330548904e-05, "epoch": 0.10899332553498933, "percentage": 10.9, "elapsed_time": "1:06:28", "remaining_time": "9:03:21"} +{"current_steps": 397, "total_steps": 3633, "loss": 0.901, "learning_rate": 3.901896941921843e-05, "epoch": 0.10926856120553223, "percentage": 10.93, "elapsed_time": "1:06:38", "remaining_time": "9:03:09"} +{"current_steps": 398, "total_steps": 3633, "loss": 0.8666, "learning_rate": 3.9013556991875515e-05, "epoch": 0.10954379687607514, "percentage": 10.96, "elapsed_time": "1:06:48", "remaining_time": "9:02:59"} +{"current_steps": 399, "total_steps": 3633, "loss": 0.8703, "learning_rate": 3.900813005265113e-05, "epoch": 0.10981903254661804, "percentage": 10.98, "elapsed_time": "1:06:58", "remaining_time": "9:02:49"} +{"current_steps": 400, "total_steps": 3633, "loss": 0.8923, "learning_rate": 3.9002688605687334e-05, "epoch": 0.11009426821716094, "percentage": 11.01, "elapsed_time": "1:07:08", "remaining_time": "9:02:38"} +{"current_steps": 401, "total_steps": 3633, "loss": 0.8714, "learning_rate": 3.8997232655137234e-05, "epoch": 0.11036950388770385, "percentage": 11.04, "elapsed_time": "1:07:18", "remaining_time": "9:02:28"} +{"current_steps": 402, "total_steps": 3633, "loss": 0.8678, "learning_rate": 3.899176220516504e-05, "epoch": 0.11064473955824675, "percentage": 11.07, "elapsed_time": "1:07:28", "remaining_time": "9:02:17"} +{"current_steps": 403, "total_steps": 3633, "loss": 0.8691, "learning_rate": 3.8986277259945996e-05, "epoch": 0.11091997522878966, "percentage": 11.09, "elapsed_time": "1:07:38", "remaining_time": "9:02:06"} +{"current_steps": 404, "total_steps": 3633, "loss": 0.874, "learning_rate": 3.898077782366643e-05, "epoch": 0.11119521089933256, "percentage": 11.12, "elapsed_time": "1:07:48", "remaining_time": "9:01:55"} +{"current_steps": 405, "total_steps": 3633, "loss": 0.8593, "learning_rate": 3.897526390052372e-05, "epoch": 0.11147044656987545, "percentage": 11.15, "elapsed_time": "1:07:58", "remaining_time": "9:01:45"} +{"current_steps": 406, "total_steps": 3633, "loss": 0.8838, "learning_rate": 3.8969735494726306e-05, "epoch": 0.11174568224041836, "percentage": 11.18, "elapsed_time": "1:08:08", "remaining_time": "9:01:34"} +{"current_steps": 407, "total_steps": 3633, "loss": 0.8427, "learning_rate": 3.896419261049369e-05, "epoch": 0.11202091791096126, "percentage": 11.2, "elapsed_time": "1:08:18", "remaining_time": "9:01:24"} +{"current_steps": 408, "total_steps": 3633, "loss": 0.8692, "learning_rate": 3.8958635252056404e-05, "epoch": 0.11229615358150416, "percentage": 11.23, "elapsed_time": "1:08:28", "remaining_time": "9:01:13"} +{"current_steps": 409, "total_steps": 3633, "loss": 0.892, "learning_rate": 3.8953063423656055e-05, "epoch": 0.11257138925204707, "percentage": 11.26, "elapsed_time": "1:08:38", "remaining_time": "9:01:03"} +{"current_steps": 410, "total_steps": 3633, "loss": 0.8883, "learning_rate": 3.8947477129545256e-05, "epoch": 0.11284662492258997, "percentage": 11.29, "elapsed_time": "1:08:48", "remaining_time": "9:00:52"} +{"current_steps": 411, "total_steps": 3633, "loss": 0.8641, "learning_rate": 3.89418763739877e-05, "epoch": 0.11312186059313287, "percentage": 11.31, "elapsed_time": "1:08:58", "remaining_time": "9:00:41"} +{"current_steps": 412, "total_steps": 3633, "loss": 0.879, "learning_rate": 3.8936261161258094e-05, "epoch": 0.11339709626367578, "percentage": 11.34, "elapsed_time": "1:09:08", "remaining_time": "9:00:30"} +{"current_steps": 413, "total_steps": 3633, "loss": 0.8546, "learning_rate": 3.893063149564218e-05, "epoch": 0.11367233193421868, "percentage": 11.37, "elapsed_time": "1:09:18", "remaining_time": "9:00:19"} +{"current_steps": 414, "total_steps": 3633, "loss": 0.8748, "learning_rate": 3.8924987381436746e-05, "epoch": 0.11394756760476157, "percentage": 11.4, "elapsed_time": "1:09:28", "remaining_time": "9:00:09"} +{"current_steps": 415, "total_steps": 3633, "loss": 0.8525, "learning_rate": 3.8919328822949587e-05, "epoch": 0.11422280327530449, "percentage": 11.42, "elapsed_time": "1:09:38", "remaining_time": "8:59:59"} +{"current_steps": 416, "total_steps": 3633, "loss": 0.8704, "learning_rate": 3.8913655824499536e-05, "epoch": 0.11449803894584738, "percentage": 11.45, "elapsed_time": "1:09:48", "remaining_time": "8:59:49"} +{"current_steps": 417, "total_steps": 3633, "loss": 0.8755, "learning_rate": 3.890796839041646e-05, "epoch": 0.11477327461639028, "percentage": 11.48, "elapsed_time": "1:09:58", "remaining_time": "8:59:38"} +{"current_steps": 418, "total_steps": 3633, "loss": 0.8703, "learning_rate": 3.890226652504121e-05, "epoch": 0.11504851028693319, "percentage": 11.51, "elapsed_time": "1:10:08", "remaining_time": "8:59:28"} +{"current_steps": 419, "total_steps": 3633, "loss": 0.8596, "learning_rate": 3.889655023272568e-05, "epoch": 0.11532374595747609, "percentage": 11.53, "elapsed_time": "1:10:18", "remaining_time": "8:59:17"} +{"current_steps": 420, "total_steps": 3633, "loss": 0.9089, "learning_rate": 3.889081951783276e-05, "epoch": 0.11559898162801899, "percentage": 11.56, "elapsed_time": "1:10:28", "remaining_time": "8:59:07"} +{"current_steps": 421, "total_steps": 3633, "loss": 0.8628, "learning_rate": 3.888507438473636e-05, "epoch": 0.1158742172985619, "percentage": 11.59, "elapsed_time": "1:10:38", "remaining_time": "8:58:56"} +{"current_steps": 422, "total_steps": 3633, "loss": 0.9246, "learning_rate": 3.887931483782137e-05, "epoch": 0.1161494529691048, "percentage": 11.62, "elapsed_time": "1:10:48", "remaining_time": "8:58:46"} +{"current_steps": 423, "total_steps": 3633, "loss": 0.8576, "learning_rate": 3.8873540881483725e-05, "epoch": 0.1164246886396477, "percentage": 11.64, "elapsed_time": "1:10:58", "remaining_time": "8:58:35"} +{"current_steps": 424, "total_steps": 3633, "loss": 0.8908, "learning_rate": 3.8867752520130315e-05, "epoch": 0.1166999243101906, "percentage": 11.67, "elapsed_time": "1:11:08", "remaining_time": "8:58:25"} +{"current_steps": 425, "total_steps": 3633, "loss": 0.8969, "learning_rate": 3.8861949758179044e-05, "epoch": 0.1169751599807335, "percentage": 11.7, "elapsed_time": "1:11:18", "remaining_time": "8:58:15"} +{"current_steps": 426, "total_steps": 3633, "loss": 0.8467, "learning_rate": 3.88561326000588e-05, "epoch": 0.1172503956512764, "percentage": 11.73, "elapsed_time": "1:11:28", "remaining_time": "8:58:05"} +{"current_steps": 427, "total_steps": 3633, "loss": 0.9076, "learning_rate": 3.8850301050209476e-05, "epoch": 0.11752563132181931, "percentage": 11.75, "elapsed_time": "1:11:38", "remaining_time": "8:57:55"} +{"current_steps": 428, "total_steps": 3633, "loss": 0.8969, "learning_rate": 3.8844455113081915e-05, "epoch": 0.11780086699236221, "percentage": 11.78, "elapsed_time": "1:11:48", "remaining_time": "8:57:45"} +{"current_steps": 429, "total_steps": 3633, "loss": 0.8923, "learning_rate": 3.883859479313798e-05, "epoch": 0.11807610266290511, "percentage": 11.81, "elapsed_time": "1:11:58", "remaining_time": "8:57:34"} +{"current_steps": 430, "total_steps": 3633, "loss": 0.8667, "learning_rate": 3.883272009485049e-05, "epoch": 0.11835133833344802, "percentage": 11.84, "elapsed_time": "1:12:08", "remaining_time": "8:57:24"} +{"current_steps": 431, "total_steps": 3633, "loss": 0.8551, "learning_rate": 3.8826831022703245e-05, "epoch": 0.11862657400399092, "percentage": 11.86, "elapsed_time": "1:12:18", "remaining_time": "8:57:14"} +{"current_steps": 432, "total_steps": 3633, "loss": 0.8421, "learning_rate": 3.882092758119099e-05, "epoch": 0.11890180967453381, "percentage": 11.89, "elapsed_time": "1:12:29", "remaining_time": "8:57:04"} +{"current_steps": 433, "total_steps": 3633, "loss": 0.8777, "learning_rate": 3.88150097748195e-05, "epoch": 0.11917704534507673, "percentage": 11.92, "elapsed_time": "1:12:39", "remaining_time": "8:56:54"} +{"current_steps": 434, "total_steps": 3633, "loss": 0.8443, "learning_rate": 3.8809077608105435e-05, "epoch": 0.11945228101561962, "percentage": 11.95, "elapsed_time": "1:12:49", "remaining_time": "8:56:44"} +{"current_steps": 435, "total_steps": 3633, "loss": 0.8509, "learning_rate": 3.8803131085576477e-05, "epoch": 0.11972751668616252, "percentage": 11.97, "elapsed_time": "1:12:59", "remaining_time": "8:56:34"} +{"current_steps": 436, "total_steps": 3633, "loss": 0.9012, "learning_rate": 3.879717021177123e-05, "epoch": 0.12000275235670543, "percentage": 12.0, "elapsed_time": "1:13:09", "remaining_time": "8:56:24"} +{"current_steps": 437, "total_steps": 3633, "loss": 0.9095, "learning_rate": 3.879119499123927e-05, "epoch": 0.12027798802724833, "percentage": 12.03, "elapsed_time": "1:13:19", "remaining_time": "8:56:14"} +{"current_steps": 438, "total_steps": 3633, "loss": 0.8522, "learning_rate": 3.878520542854111e-05, "epoch": 0.12055322369779123, "percentage": 12.06, "elapsed_time": "1:13:29", "remaining_time": "8:56:04"} +{"current_steps": 439, "total_steps": 3633, "loss": 0.8709, "learning_rate": 3.877920152824822e-05, "epoch": 0.12082845936833414, "percentage": 12.08, "elapsed_time": "1:13:39", "remaining_time": "8:55:54"} +{"current_steps": 440, "total_steps": 3633, "loss": 0.8558, "learning_rate": 3.8773183294943015e-05, "epoch": 0.12110369503887704, "percentage": 12.11, "elapsed_time": "1:13:49", "remaining_time": "8:55:44"} +{"current_steps": 441, "total_steps": 3633, "loss": 0.8589, "learning_rate": 3.876715073321883e-05, "epoch": 0.12137893070941994, "percentage": 12.14, "elapsed_time": "1:13:59", "remaining_time": "8:55:33"} +{"current_steps": 442, "total_steps": 3633, "loss": 0.8666, "learning_rate": 3.876110384767996e-05, "epoch": 0.12165416637996285, "percentage": 12.17, "elapsed_time": "1:14:09", "remaining_time": "8:55:23"} +{"current_steps": 443, "total_steps": 3633, "loss": 0.8658, "learning_rate": 3.875504264294161e-05, "epoch": 0.12192940205050574, "percentage": 12.19, "elapsed_time": "1:14:19", "remaining_time": "8:55:13"} +{"current_steps": 444, "total_steps": 3633, "loss": 0.8923, "learning_rate": 3.874896712362994e-05, "epoch": 0.12220463772104864, "percentage": 12.22, "elapsed_time": "1:14:29", "remaining_time": "8:55:03"} +{"current_steps": 445, "total_steps": 3633, "loss": 0.8747, "learning_rate": 3.874287729438201e-05, "epoch": 0.12247987339159155, "percentage": 12.25, "elapsed_time": "1:14:39", "remaining_time": "8:54:53"} +{"current_steps": 446, "total_steps": 3633, "loss": 0.9141, "learning_rate": 3.873677315984582e-05, "epoch": 0.12275510906213445, "percentage": 12.28, "elapsed_time": "1:14:49", "remaining_time": "8:54:42"} +{"current_steps": 447, "total_steps": 3633, "loss": 0.887, "learning_rate": 3.8730654724680284e-05, "epoch": 0.12303034473267735, "percentage": 12.3, "elapsed_time": "1:14:59", "remaining_time": "8:54:32"} +{"current_steps": 448, "total_steps": 3633, "loss": 0.8712, "learning_rate": 3.8724521993555216e-05, "epoch": 0.12330558040322026, "percentage": 12.33, "elapsed_time": "1:15:09", "remaining_time": "8:54:22"} +{"current_steps": 449, "total_steps": 3633, "loss": 0.8856, "learning_rate": 3.8718374971151356e-05, "epoch": 0.12358081607376316, "percentage": 12.36, "elapsed_time": "1:15:19", "remaining_time": "8:54:12"} +{"current_steps": 450, "total_steps": 3633, "loss": 0.884, "learning_rate": 3.871221366216036e-05, "epoch": 0.12385605174430606, "percentage": 12.39, "elapsed_time": "1:15:30", "remaining_time": "8:54:02"} +{"current_steps": 451, "total_steps": 3633, "loss": 0.8824, "learning_rate": 3.870603807128477e-05, "epoch": 0.12413128741484897, "percentage": 12.41, "elapsed_time": "1:15:40", "remaining_time": "8:53:52"} +{"current_steps": 452, "total_steps": 3633, "loss": 0.866, "learning_rate": 3.869984820323804e-05, "epoch": 0.12440652308539187, "percentage": 12.44, "elapsed_time": "1:15:50", "remaining_time": "8:53:42"} +{"current_steps": 453, "total_steps": 3633, "loss": 0.8622, "learning_rate": 3.86936440627445e-05, "epoch": 0.12468175875593476, "percentage": 12.47, "elapsed_time": "1:16:00", "remaining_time": "8:53:32"} +{"current_steps": 454, "total_steps": 3633, "loss": 0.9008, "learning_rate": 3.868742565453941e-05, "epoch": 0.12495699442647767, "percentage": 12.5, "elapsed_time": "1:16:10", "remaining_time": "8:53:21"} +{"current_steps": 455, "total_steps": 3633, "loss": 0.865, "learning_rate": 3.868119298336889e-05, "epoch": 0.12523223009702059, "percentage": 12.52, "elapsed_time": "1:16:20", "remaining_time": "8:53:11"} +{"current_steps": 456, "total_steps": 3633, "loss": 0.8768, "learning_rate": 3.867494605398996e-05, "epoch": 0.12550746576756347, "percentage": 12.55, "elapsed_time": "1:16:30", "remaining_time": "8:53:01"} +{"current_steps": 457, "total_steps": 3633, "loss": 0.8512, "learning_rate": 3.8668684871170514e-05, "epoch": 0.12578270143810638, "percentage": 12.58, "elapsed_time": "1:16:40", "remaining_time": "8:52:51"} +{"current_steps": 458, "total_steps": 3633, "loss": 0.8425, "learning_rate": 3.866240943968932e-05, "epoch": 0.1260579371086493, "percentage": 12.61, "elapsed_time": "1:16:50", "remaining_time": "8:52:40"} +{"current_steps": 459, "total_steps": 3633, "loss": 0.8819, "learning_rate": 3.865611976433605e-05, "epoch": 0.12633317277919218, "percentage": 12.63, "elapsed_time": "1:17:00", "remaining_time": "8:52:30"} +{"current_steps": 460, "total_steps": 3633, "loss": 0.8788, "learning_rate": 3.864981584991122e-05, "epoch": 0.1266084084497351, "percentage": 12.66, "elapsed_time": "1:17:10", "remaining_time": "8:52:20"} +{"current_steps": 461, "total_steps": 3633, "loss": 0.8797, "learning_rate": 3.864349770122621e-05, "epoch": 0.126883644120278, "percentage": 12.69, "elapsed_time": "1:17:20", "remaining_time": "8:52:09"} +{"current_steps": 462, "total_steps": 3633, "loss": 0.9062, "learning_rate": 3.863716532310329e-05, "epoch": 0.12715887979082088, "percentage": 12.72, "elapsed_time": "1:17:30", "remaining_time": "8:51:59"} +{"current_steps": 463, "total_steps": 3633, "loss": 0.8687, "learning_rate": 3.863081872037557e-05, "epoch": 0.1274341154613638, "percentage": 12.74, "elapsed_time": "1:17:40", "remaining_time": "8:51:50"} +{"current_steps": 464, "total_steps": 3633, "loss": 0.9079, "learning_rate": 3.862445789788701e-05, "epoch": 0.1277093511319067, "percentage": 12.77, "elapsed_time": "1:17:50", "remaining_time": "8:51:39"} +{"current_steps": 465, "total_steps": 3633, "loss": 0.8738, "learning_rate": 3.8618082860492456e-05, "epoch": 0.1279845868024496, "percentage": 12.8, "elapsed_time": "1:18:00", "remaining_time": "8:51:29"} +{"current_steps": 466, "total_steps": 3633, "loss": 0.8607, "learning_rate": 3.861169361305757e-05, "epoch": 0.1282598224729925, "percentage": 12.83, "elapsed_time": "1:18:10", "remaining_time": "8:51:19"} +{"current_steps": 467, "total_steps": 3633, "loss": 0.8927, "learning_rate": 3.860529016045888e-05, "epoch": 0.1285350581435354, "percentage": 12.85, "elapsed_time": "1:18:20", "remaining_time": "8:51:08"} +{"current_steps": 468, "total_steps": 3633, "loss": 0.847, "learning_rate": 3.859887250758374e-05, "epoch": 0.1288102938140783, "percentage": 12.88, "elapsed_time": "1:18:30", "remaining_time": "8:50:58"} +{"current_steps": 469, "total_steps": 3633, "loss": 0.8587, "learning_rate": 3.8592440659330354e-05, "epoch": 0.1290855294846212, "percentage": 12.91, "elapsed_time": "1:18:40", "remaining_time": "8:50:48"} +{"current_steps": 470, "total_steps": 3633, "loss": 0.8661, "learning_rate": 3.858599462060776e-05, "epoch": 0.12936076515516412, "percentage": 12.94, "elapsed_time": "1:18:50", "remaining_time": "8:50:37"} +{"current_steps": 471, "total_steps": 3633, "loss": 0.8719, "learning_rate": 3.8579534396335835e-05, "epoch": 0.129636000825707, "percentage": 12.96, "elapsed_time": "1:19:00", "remaining_time": "8:50:27"} +{"current_steps": 472, "total_steps": 3633, "loss": 0.8482, "learning_rate": 3.857305999144525e-05, "epoch": 0.12991123649624992, "percentage": 12.99, "elapsed_time": "1:19:10", "remaining_time": "8:50:16"} +{"current_steps": 473, "total_steps": 3633, "loss": 0.877, "learning_rate": 3.856657141087753e-05, "epoch": 0.13018647216679283, "percentage": 13.02, "elapsed_time": "1:19:20", "remaining_time": "8:50:06"} +{"current_steps": 474, "total_steps": 3633, "loss": 0.9126, "learning_rate": 3.8560068659585006e-05, "epoch": 0.1304617078373357, "percentage": 13.05, "elapsed_time": "1:19:30", "remaining_time": "8:49:55"} +{"current_steps": 475, "total_steps": 3633, "loss": 0.8648, "learning_rate": 3.855355174253084e-05, "epoch": 0.13073694350787862, "percentage": 13.07, "elapsed_time": "1:19:40", "remaining_time": "8:49:45"} +{"current_steps": 476, "total_steps": 3633, "loss": 0.8767, "learning_rate": 3.854702066468899e-05, "epoch": 0.13101217917842153, "percentage": 13.1, "elapsed_time": "1:19:50", "remaining_time": "8:49:34"} +{"current_steps": 477, "total_steps": 3633, "loss": 0.8955, "learning_rate": 3.8540475431044224e-05, "epoch": 0.13128741484896442, "percentage": 13.13, "elapsed_time": "1:20:00", "remaining_time": "8:49:24"} +{"current_steps": 478, "total_steps": 3633, "loss": 0.8397, "learning_rate": 3.8533916046592115e-05, "epoch": 0.13156265051950733, "percentage": 13.16, "elapsed_time": "1:20:10", "remaining_time": "8:49:14"} +{"current_steps": 479, "total_steps": 3633, "loss": 0.8653, "learning_rate": 3.852734251633905e-05, "epoch": 0.13183788619005024, "percentage": 13.18, "elapsed_time": "1:20:20", "remaining_time": "8:49:03"} +{"current_steps": 480, "total_steps": 3633, "loss": 0.8407, "learning_rate": 3.852075484530219e-05, "epoch": 0.13211312186059312, "percentage": 13.21, "elapsed_time": "1:20:31", "remaining_time": "8:48:53"} +{"current_steps": 481, "total_steps": 3633, "loss": 0.8481, "learning_rate": 3.85141530385095e-05, "epoch": 0.13238835753113604, "percentage": 13.24, "elapsed_time": "1:20:41", "remaining_time": "8:48:43"} +{"current_steps": 482, "total_steps": 3633, "loss": 0.8597, "learning_rate": 3.8507537100999746e-05, "epoch": 0.13266359320167895, "percentage": 13.27, "elapsed_time": "1:20:51", "remaining_time": "8:48:33"} +{"current_steps": 483, "total_steps": 3633, "loss": 0.8712, "learning_rate": 3.850090703782246e-05, "epoch": 0.13293882887222183, "percentage": 13.29, "elapsed_time": "1:21:01", "remaining_time": "8:48:23"} +{"current_steps": 484, "total_steps": 3633, "loss": 0.8448, "learning_rate": 3.8494262854037955e-05, "epoch": 0.13321406454276474, "percentage": 13.32, "elapsed_time": "1:21:11", "remaining_time": "8:48:12"} +{"current_steps": 485, "total_steps": 3633, "loss": 0.9094, "learning_rate": 3.848760455471734e-05, "epoch": 0.13348930021330765, "percentage": 13.35, "elapsed_time": "1:21:21", "remaining_time": "8:48:02"} +{"current_steps": 486, "total_steps": 3633, "loss": 0.8744, "learning_rate": 3.848093214494248e-05, "epoch": 0.13376453588385054, "percentage": 13.38, "elapsed_time": "1:21:31", "remaining_time": "8:47:52"} +{"current_steps": 487, "total_steps": 3633, "loss": 0.8576, "learning_rate": 3.847424562980602e-05, "epoch": 0.13403977155439345, "percentage": 13.4, "elapsed_time": "1:21:41", "remaining_time": "8:47:42"} +{"current_steps": 488, "total_steps": 3633, "loss": 0.8627, "learning_rate": 3.8467545014411365e-05, "epoch": 0.13431500722493636, "percentage": 13.43, "elapsed_time": "1:21:51", "remaining_time": "8:47:32"} +{"current_steps": 489, "total_steps": 3633, "loss": 0.8773, "learning_rate": 3.846083030387268e-05, "epoch": 0.13459024289547925, "percentage": 13.46, "elapsed_time": "1:22:01", "remaining_time": "8:47:22"} +{"current_steps": 490, "total_steps": 3633, "loss": 0.8688, "learning_rate": 3.8454101503314896e-05, "epoch": 0.13486547856602216, "percentage": 13.49, "elapsed_time": "1:22:11", "remaining_time": "8:47:12"} +{"current_steps": 491, "total_steps": 3633, "loss": 0.8446, "learning_rate": 3.84473586178737e-05, "epoch": 0.13514071423656507, "percentage": 13.52, "elapsed_time": "1:22:21", "remaining_time": "8:47:01"} +{"current_steps": 492, "total_steps": 3633, "loss": 0.8615, "learning_rate": 3.8440601652695504e-05, "epoch": 0.13541594990710795, "percentage": 13.54, "elapsed_time": "1:22:31", "remaining_time": "8:46:51"} +{"current_steps": 493, "total_steps": 3633, "loss": 0.872, "learning_rate": 3.84338306129375e-05, "epoch": 0.13569118557765086, "percentage": 13.57, "elapsed_time": "1:22:41", "remaining_time": "8:46:41"} +{"current_steps": 494, "total_steps": 3633, "loss": 0.8813, "learning_rate": 3.842704550376761e-05, "epoch": 0.13596642124819378, "percentage": 13.6, "elapsed_time": "1:22:51", "remaining_time": "8:46:31"} +{"current_steps": 495, "total_steps": 3633, "loss": 0.8516, "learning_rate": 3.842024633036448e-05, "epoch": 0.13624165691873666, "percentage": 13.63, "elapsed_time": "1:23:01", "remaining_time": "8:46:21"} +{"current_steps": 496, "total_steps": 3633, "loss": 0.8465, "learning_rate": 3.841343309791751e-05, "epoch": 0.13651689258927957, "percentage": 13.65, "elapsed_time": "1:23:11", "remaining_time": "8:46:11"} +{"current_steps": 497, "total_steps": 3633, "loss": 0.8764, "learning_rate": 3.8406605811626814e-05, "epoch": 0.13679212825982248, "percentage": 13.68, "elapsed_time": "1:23:21", "remaining_time": "8:46:01"} +{"current_steps": 498, "total_steps": 3633, "loss": 0.8865, "learning_rate": 3.8399764476703244e-05, "epoch": 0.13706736393036537, "percentage": 13.71, "elapsed_time": "1:23:31", "remaining_time": "8:45:51"} +{"current_steps": 499, "total_steps": 3633, "loss": 0.8696, "learning_rate": 3.8392909098368377e-05, "epoch": 0.13734259960090828, "percentage": 13.74, "elapsed_time": "1:23:42", "remaining_time": "8:45:41"} +{"current_steps": 500, "total_steps": 3633, "loss": 0.8735, "learning_rate": 3.8386039681854504e-05, "epoch": 0.1376178352714512, "percentage": 13.76, "elapsed_time": "1:23:52", "remaining_time": "8:45:30"} +{"current_steps": 501, "total_steps": 3633, "loss": 0.8688, "learning_rate": 3.837915623240462e-05, "epoch": 0.13789307094199407, "percentage": 13.79, "elapsed_time": "1:24:09", "remaining_time": "8:46:10"} +{"current_steps": 502, "total_steps": 3633, "loss": 0.8696, "learning_rate": 3.837225875527244e-05, "epoch": 0.13816830661253698, "percentage": 13.82, "elapsed_time": "1:24:20", "remaining_time": "8:45:59"} +{"current_steps": 503, "total_steps": 3633, "loss": 0.8423, "learning_rate": 3.8365347255722396e-05, "epoch": 0.1384435422830799, "percentage": 13.85, "elapsed_time": "1:24:30", "remaining_time": "8:45:49"} +{"current_steps": 504, "total_steps": 3633, "loss": 0.8478, "learning_rate": 3.835842173902959e-05, "epoch": 0.13871877795362278, "percentage": 13.87, "elapsed_time": "1:24:40", "remaining_time": "8:45:39"} +{"current_steps": 505, "total_steps": 3633, "loss": 0.8599, "learning_rate": 3.835148221047988e-05, "epoch": 0.1389940136241657, "percentage": 13.9, "elapsed_time": "1:24:50", "remaining_time": "8:45:29"} +{"current_steps": 506, "total_steps": 3633, "loss": 0.8493, "learning_rate": 3.834452867536974e-05, "epoch": 0.1392692492947086, "percentage": 13.93, "elapsed_time": "1:25:00", "remaining_time": "8:45:19"} +{"current_steps": 507, "total_steps": 3633, "loss": 0.8435, "learning_rate": 3.8337561139006405e-05, "epoch": 0.1395444849652515, "percentage": 13.96, "elapsed_time": "1:25:10", "remaining_time": "8:45:09"} +{"current_steps": 508, "total_steps": 3633, "loss": 0.867, "learning_rate": 3.833057960670776e-05, "epoch": 0.1398197206357944, "percentage": 13.98, "elapsed_time": "1:25:20", "remaining_time": "8:44:59"} +{"current_steps": 509, "total_steps": 3633, "loss": 0.8642, "learning_rate": 3.832358408380239e-05, "epoch": 0.1400949563063373, "percentage": 14.01, "elapsed_time": "1:25:30", "remaining_time": "8:44:48"} +{"current_steps": 510, "total_steps": 3633, "loss": 0.8859, "learning_rate": 3.8316574575629524e-05, "epoch": 0.1403701919768802, "percentage": 14.04, "elapsed_time": "1:25:40", "remaining_time": "8:44:38"} +{"current_steps": 511, "total_steps": 3633, "loss": 0.8808, "learning_rate": 3.8309551087539116e-05, "epoch": 0.1406454276474231, "percentage": 14.07, "elapsed_time": "1:25:50", "remaining_time": "8:44:28"} +{"current_steps": 512, "total_steps": 3633, "loss": 0.8676, "learning_rate": 3.8302513624891743e-05, "epoch": 0.14092066331796602, "percentage": 14.09, "elapsed_time": "1:26:00", "remaining_time": "8:44:18"} +{"current_steps": 513, "total_steps": 3633, "loss": 0.8376, "learning_rate": 3.8295462193058686e-05, "epoch": 0.1411958989885089, "percentage": 14.12, "elapsed_time": "1:26:10", "remaining_time": "8:44:07"} +{"current_steps": 514, "total_steps": 3633, "loss": 0.8937, "learning_rate": 3.8288396797421855e-05, "epoch": 0.1414711346590518, "percentage": 14.15, "elapsed_time": "1:26:20", "remaining_time": "8:43:57"} +{"current_steps": 515, "total_steps": 3633, "loss": 0.8645, "learning_rate": 3.828131744337384e-05, "epoch": 0.14174637032959472, "percentage": 14.18, "elapsed_time": "1:26:30", "remaining_time": "8:43:47"}