File size: 1,480 Bytes
d32af15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
---
library_name: hivex
original_train_name: DroneBasedReforestation_difficulty_2_task_1_run_id_1_train
tags:
- hivex
- hivex-drone-based-reforestation
- reinforcement-learning
- multi-agent-reinforcement-learning
model-index:
- name: hivex-DBR-PPO-baseline-task-1-difficulty-2
results:
- task:
type: sub-task
name: find_closest_forest_perimeter
task-id: 1
difficulty-id: 2
dataset:
name: hivex-drone-based-reforestation
type: hivex-drone-based-reforestation
metrics:
- type: out_of_energy_count
value: 0.009395705871284007 +/- 0.01058490523832613
name: Out of Energy Count
verified: true
- type: cumulative_reward
value: 98.5509489440918 +/- 1.6278764379641424
name: Cumulative Reward
verified: true
---
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task <code>1</code> with difficulty <code>2</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>Environment: **Drone-Based Reforestation**<br>Task: <code>1</code><br>Difficulty: <code>2</code><br>Algorithm: <code>PPO</code><br>Episode Length: <code>2000</code><br>Training <code>max_steps</code>: <code>1200000</code><br>Testing <code>max_steps</code>: <code>300000</code><br><br>Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>Download the [Environment](https://github.com/hivex-research/hivex-environments) |