philippds commited on
Commit
876c5e7
·
verified ·
1 Parent(s): 03bfa67

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -35
README.md CHANGED
@@ -1,35 +1,37 @@
1
- ---
2
- library_name: hivex
3
- original_train_name: DroneBasedReforestation_difficulty_4_task_2_run_id_1_train
4
- tags:
5
- - hivex
6
- - hivex-drone-based-reforestation
7
- - reinforcement-learning
8
- - multi-agent-reinforcement-learning
9
- model-index:
10
- - name: hivex-DBR-PPO-baseline-task-2-difficulty-4
11
- results:
12
- - task:
13
- type: sub-task
14
- name: pick_up_seed_at_base
15
- task-id: 2
16
- difficulty-id: 4
17
- dataset:
18
- name: hivex-drone-based-reforestation
19
- type: hivex-drone-based-reforestation
20
- metrics:
21
- - type: out_of_energy_count
22
- value: 0.5909523957967758 +/- 0.09171894105446358
23
- name: Out of Energy Count
24
- verified: true
25
- - type: recharge_energy_count
26
- value: 125.54469884961844 +/- 115.46428296295271
27
- name: Recharge Energy Count
28
- verified: true
29
- - type: cumulative_reward
30
- value: 12.542430520057678 +/- 7.328528013270426
31
- name: Cumulative Reward
32
- verified: true
33
- ---
34
-
35
- This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task <code>2</code> with difficulty <code>4</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>Environment: **Drone-Based Reforestation**<br>Task: <code>2</code><br>Difficulty: <code>4</code><br>Algorithm: <code>PPO</code><br>Episode Length: <code>2000</code><br>Training <code>max_steps</code>: <code>1200000</code><br>Testing <code>max_steps</code>: <code>300000</code><br><br>Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>Download the [Environment](https://github.com/hivex-research/hivex-environments)
 
 
 
1
+ ---
2
+ library_name: hivex
3
+ original_train_name: DroneBasedReforestation_difficulty_4_task_2_run_id_1_train
4
+ tags:
5
+ - hivex
6
+ - hivex-drone-based-reforestation
7
+ - reinforcement-learning
8
+ - multi-agent-reinforcement-learning
9
+ model-index:
10
+ - name: hivex-DBR-PPO-baseline-task-2-difficulty-4
11
+ results:
12
+ - task:
13
+ type: sub-task
14
+ name: pick_up_seed_at_base
15
+ task-id: 2
16
+ difficulty-id: 4
17
+ dataset:
18
+ name: hivex-drone-based-reforestation
19
+ type: hivex-drone-based-reforestation
20
+ metrics:
21
+ - type: out_of_energy_count
22
+ value: 0.5909523957967758 +/- 0.09171894105446358
23
+ name: Out of Energy Count
24
+ verified: true
25
+ - type: recharge_energy_count
26
+ value: 125.54469884961844 +/- 115.46428296295271
27
+ name: Recharge Energy Count
28
+ verified: true
29
+ - type: cumulative_reward
30
+ value: 12.542430520057678 +/- 7.328528013270426
31
+ name: Cumulative Reward
32
+ verified: true
33
+ ---
34
+
35
+ This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task <code>2</code> with difficulty <code>4</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>Environment: **Drone-Based Reforestation**<br>Task: <code>2</code><br>Difficulty: <code>4</code><br>Algorithm: <code>PPO</code><br>Episode Length: <code>2000</code><br>Training <code>max_steps</code>: <code>1200000</code><br>Testing <code>max_steps</code>: <code>300000</code><br><br>Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>Download the [Environment](https://github.com/hivex-research/hivex-environments)
36
+
37
+ [hivex-paper]: https://arxiv.org/abs/2501.04180