--- library_name: hivex original_train_name: DroneBasedReforestation_difficulty_4_task_3_run_id_2_train tags: - hivex - hivex-drone-based-reforestation - reinforcement-learning - multi-agent-reinforcement-learning model-index: - name: hivex-DBR-PPO-baseline-task-3-difficulty-4 results: - task: type: sub-task name: drop_seed task-id: 3 difficulty-id: 4 dataset: name: hivex-drone-based-reforestation type: hivex-drone-based-reforestation metrics: - type: cumulative_distance_reward value: 1.3088074851036071 +/- 0.2150446017537585 name: Cumulative Distance Reward verified: true - type: cumulative_distance_until_tree_drop value: 48.39169616699219 +/- 5.7290635352219415 name: Cumulative Distance Until Tree Drop verified: true - type: cumulative_distance_to_existing_trees value: 64.92751655578613 +/- 4.971308759365728 name: Cumulative Distance to Existing Trees verified: true - type: cumulative_normalized_distance_until_tree_drop value: 0.13088074818253517 +/- 0.021504460692074904 name: Cumulative Normalized Distance Until Tree Drop verified: true - type: cumulative_tree_drop_reward value: 3.975467157363892 +/- 0.5825542394332213 name: Cumulative Tree Drop Reward verified: true - type: out_of_energy_count value: 0.04072725491598248 +/- 0.02455264640086014 name: Out of Energy Count verified: true - type: recharge_energy_count value: 10.695373344421387 +/- 0.5710744663818678 name: Recharge Energy Count verified: true - type: tree_drop_count value: 0.9469023418426513 +/- 0.033324031370099066 name: Tree Drop Count verified: true - type: cumulative_reward value: 101.1289744567871 +/- 3.8212373566735938 name: Cumulative Reward verified: true --- This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task 3 with difficulty 4 using the Proximal Policy Optimization (PPO) algorithm.

Environment: **Drone-Based Reforestation**
Task: 3
Difficulty: 4
Algorithm: PPO
Episode Length: 2000
Training max_steps: 1200000
Testing max_steps: 300000

Train & Test [Scripts](https://github.com/hivex-research/hivex)
Download the [Environment](https://github.com/hivex-research/hivex-environments) [hivex-paper]: https://arxiv.org/abs/2501.04180