Update README.md
Browse files
README.md
CHANGED
@@ -1,35 +1,37 @@
|
|
1 |
-
---
|
2 |
-
library_name: hivex
|
3 |
-
original_train_name: DroneBasedReforestation_difficulty_10_task_5_run_id_1_train
|
4 |
-
tags:
|
5 |
-
- hivex
|
6 |
-
- hivex-drone-based-reforestation
|
7 |
-
- reinforcement-learning
|
8 |
-
- multi-agent-reinforcement-learning
|
9 |
-
model-index:
|
10 |
-
- name: hivex-DBR-PPO-baseline-task-5-difficulty-10
|
11 |
-
results:
|
12 |
-
- task:
|
13 |
-
type: sub-task
|
14 |
-
name: find_highest_potential_seed_drop_location
|
15 |
-
task-id: 5
|
16 |
-
difficulty-id: 10
|
17 |
-
dataset:
|
18 |
-
name: hivex-drone-based-reforestation
|
19 |
-
type: hivex-drone-based-reforestation
|
20 |
-
metrics:
|
21 |
-
- type: highest_point_on_terrain_found
|
22 |
-
value: 46.44914810180664 +/- 4.140176869643727
|
23 |
-
name: Highest Point on Terrain Found
|
24 |
-
verified: true
|
25 |
-
- type: out_of_energy_count
|
26 |
-
value: 0.6642222416400909 +/- 0.0670919881726494
|
27 |
-
name: Out of Energy Count
|
28 |
-
verified: true
|
29 |
-
- type: cumulative_reward
|
30 |
-
value: 45.629833755493166 +/- 3.45321067867071
|
31 |
-
name: Cumulative Reward
|
32 |
-
verified: true
|
33 |
-
---
|
34 |
-
|
35 |
-
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task <code>5</code> with difficulty <code>10</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>Environment: **Drone-Based Reforestation**<br>Task: <code>5</code><br>Difficulty: <code>10</code><br>Algorithm: <code>PPO</code><br>Episode Length: <code>2000</code><br>Training <code>max_steps</code>: <code>1200000</code><br>Testing <code>max_steps</code>: <code>300000</code><br><br>Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>Download the [Environment](https://github.com/hivex-research/hivex-environments)
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: hivex
|
3 |
+
original_train_name: DroneBasedReforestation_difficulty_10_task_5_run_id_1_train
|
4 |
+
tags:
|
5 |
+
- hivex
|
6 |
+
- hivex-drone-based-reforestation
|
7 |
+
- reinforcement-learning
|
8 |
+
- multi-agent-reinforcement-learning
|
9 |
+
model-index:
|
10 |
+
- name: hivex-DBR-PPO-baseline-task-5-difficulty-10
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: sub-task
|
14 |
+
name: find_highest_potential_seed_drop_location
|
15 |
+
task-id: 5
|
16 |
+
difficulty-id: 10
|
17 |
+
dataset:
|
18 |
+
name: hivex-drone-based-reforestation
|
19 |
+
type: hivex-drone-based-reforestation
|
20 |
+
metrics:
|
21 |
+
- type: highest_point_on_terrain_found
|
22 |
+
value: 46.44914810180664 +/- 4.140176869643727
|
23 |
+
name: Highest Point on Terrain Found
|
24 |
+
verified: true
|
25 |
+
- type: out_of_energy_count
|
26 |
+
value: 0.6642222416400909 +/- 0.0670919881726494
|
27 |
+
name: Out of Energy Count
|
28 |
+
verified: true
|
29 |
+
- type: cumulative_reward
|
30 |
+
value: 45.629833755493166 +/- 3.45321067867071
|
31 |
+
name: Cumulative Reward
|
32 |
+
verified: true
|
33 |
+
---
|
34 |
+
|
35 |
+
This model serves as the baseline for the **Drone-Based Reforestation** environment, trained and tested on task <code>5</code> with difficulty <code>10</code> using the Proximal Policy Optimization (PPO) algorithm.<br><br>Environment: **Drone-Based Reforestation**<br>Task: <code>5</code><br>Difficulty: <code>10</code><br>Algorithm: <code>PPO</code><br>Episode Length: <code>2000</code><br>Training <code>max_steps</code>: <code>1200000</code><br>Testing <code>max_steps</code>: <code>300000</code><br><br>Train & Test [Scripts](https://github.com/hivex-research/hivex)<br>Download the [Environment](https://github.com/hivex-research/hivex-environments)
|
36 |
+
|
37 |
+
[hivex-paper]: https://arxiv.org/abs/2501.04180
|