File size: 2,188 Bytes
e212ef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ee782
 
 
e212ef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5ee782
 
 
 
 
 
 
 
 
 
e212ef5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-base.en
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: multiclass-fz-enc-base-en
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# multiclass-fz-enc-base-en

This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1255
- Wer: 16.9991
- Cer: 6.8791

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     | Cer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|:-------:|
| 0.1012        | 4.5872  | 500  | 0.2311          | 21.6999 | 9.7647  |
| 0.0068        | 9.1743  | 1000 | 0.1444          | 24.1216 | 11.7228 |
| 0.0008        | 13.7615 | 1500 | 0.1342          | 17.8063 | 7.2913  |
| 0.0005        | 18.3486 | 2000 | 0.1309          | 17.9012 | 7.3600  |
| 0.0003        | 22.9358 | 2500 | 0.1286          | 17.5689 | 7.2484  |
| 0.0002        | 27.5229 | 3000 | 0.1275          | 17.6638 | 7.2655  |
| 0.0002        | 32.1101 | 3500 | 0.1266          | 16.9516 | 6.8619  |
| 0.0002        | 36.6972 | 4000 | 0.1260          | 16.9516 | 6.8705  |
| 0.0001        | 41.2844 | 4500 | 0.1255          | 16.9991 | 6.8533  |
| 0.0001        | 45.8716 | 5000 | 0.1255          | 16.9991 | 6.8791  |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0