File size: 2,188 Bytes
e212ef5 c5ee782 e212ef5 c5ee782 e212ef5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-base.en
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: multiclass-fz-enc-base-en
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# multiclass-fz-enc-base-en
This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1255
- Wer: 16.9991
- Cer: 6.8791
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|:-------:|
| 0.1012 | 4.5872 | 500 | 0.2311 | 21.6999 | 9.7647 |
| 0.0068 | 9.1743 | 1000 | 0.1444 | 24.1216 | 11.7228 |
| 0.0008 | 13.7615 | 1500 | 0.1342 | 17.8063 | 7.2913 |
| 0.0005 | 18.3486 | 2000 | 0.1309 | 17.9012 | 7.3600 |
| 0.0003 | 22.9358 | 2500 | 0.1286 | 17.5689 | 7.2484 |
| 0.0002 | 27.5229 | 3000 | 0.1275 | 17.6638 | 7.2655 |
| 0.0002 | 32.1101 | 3500 | 0.1266 | 16.9516 | 6.8619 |
| 0.0002 | 36.6972 | 4000 | 0.1260 | 16.9516 | 6.8705 |
| 0.0001 | 41.2844 | 4500 | 0.1255 | 16.9991 | 6.8533 |
| 0.0001 | 45.8716 | 5000 | 0.1255 | 16.9991 | 6.8791 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
|