--- license: apache-2.0 datasets: - tatsu-lab/alpaca - FreedomIntelligence/ShareGPT-CN language: - zh - en library_name: transformers tags: - baichuan - lora pipeline_tag: text-generation inference: false --- A chinese instruction-tuned LoRA model of https://huggingface.co/baichuan-inc/Baichuan-13B-Base - Instruction-following datasets used: alpaca-zh, sharegpt - Training framework: https://github.com/hiyouga/LLaMA-Efficient-Tuning Usage: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer tokenizer = AutoTokenizer.from_pretrained("hiyouga/baichuan-13b-sft", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("hiyouga/baichuan-13b-sft", trust_remote_code=True).cuda() streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) query = "晚上睡不着怎么办" template = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\nHuman: {}\nAssistant: " inputs = tokenizer([template.format(query)], return_tensors="pt") inputs = inputs.to("cuda") generate_ids = model.generate(**inputs, max_new_tokens=256, streamer=streamer) ``` You could also alternatively launch a CLI demo by using the script in https://github.com/hiyouga/LLaMA-Efficient-Tuning ```bash python src/cli_demo.py --model_name_or_path hiyouga/baichuan-13b-sft ``` --- You can reproduce our results by visiting the following step-by-step (Chinese) guide: https://zhuanlan.zhihu.com/p/645010851 Loss curve: ![loss](loss.png)