--- license: gemma datasets: - BUAADreamer/llava-en-zh-2k language: - en - zh library_name: transformers pipeline_tag: image-text-to-text base_model: google/paligemma-3b-mix-448 inference: false tags: - paligemma - llama-factory - mllm - vlm --- # PaliGemma-3B-Chat-v0.1 This model is fine-tuned from [google/paligemma-3b-mix-448](https://huggingface.co/google/paligemma-3b-mix-448) using [LLaMA Factory](https://github.com/hiyouga/LLaMA-Factory). ![examples](examples_en.png) ## Usage ```python import requests import torch from PIL import Image from transformers import AutoModelForVision2Seq, AutoProcessor, AutoTokenizer, TextStreamer model_id = "hiyouga/PaliGemma-3B-Chat-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id) processor = AutoProcessor.from_pretrained(model_id) model = AutoModelForVision2Seq.from_pretrained(model_id, torch_dtype="auto", device_map="auto") streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true" image = Image.open(requests.get(url, stream=True).raw) pixel_values = processor(images=[image], return_tensors="pt").to(model.device)["pixel_values"] messages = [ {"role": "user", "content": "What is in this image?"} ] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") image_token_id = tokenizer.convert_tokens_to_ids("") image_prefix = torch.empty((1, getattr(processor, "image_seq_length")), dtype=input_ids.dtype).fill_(image_token_id) input_ids = torch.cat((image_prefix, input_ids), dim=-1).to(model.device) generate_ids = model.generate(input_ids, pixel_values=pixel_values, streamer=streamer, max_new_tokens=50) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00001 - num_train_epochs: 3.0 - train_batch_size: 1 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - seed: 42 - lr_scheduler_type: cosine - mixed_precision_training: bf16 ### Framework versions - Pytorch 2.3.0 - Transformers 4.41.0