--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_adamax_001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7804878048780488 --- # hushem_1x_deit_tiny_adamax_001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9886 - Accuracy: 0.7805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.2270 | 0.3415 | | 1.4194 | 2.0 | 12 | 1.0630 | 0.5122 | | 1.4194 | 3.0 | 18 | 0.7493 | 0.7073 | | 0.7944 | 4.0 | 24 | 0.7294 | 0.7561 | | 0.3715 | 5.0 | 30 | 0.6953 | 0.6585 | | 0.3715 | 6.0 | 36 | 0.5928 | 0.8293 | | 0.1471 | 7.0 | 42 | 0.5485 | 0.8049 | | 0.1471 | 8.0 | 48 | 0.8515 | 0.6829 | | 0.0288 | 9.0 | 54 | 0.5381 | 0.8293 | | 0.0065 | 10.0 | 60 | 0.8647 | 0.7317 | | 0.0065 | 11.0 | 66 | 0.7563 | 0.7805 | | 0.0018 | 12.0 | 72 | 0.7678 | 0.8049 | | 0.0018 | 13.0 | 78 | 0.8017 | 0.8049 | | 0.0008 | 14.0 | 84 | 0.8475 | 0.7805 | | 0.0005 | 15.0 | 90 | 0.8926 | 0.7805 | | 0.0005 | 16.0 | 96 | 0.9216 | 0.7805 | | 0.0004 | 17.0 | 102 | 0.9424 | 0.7805 | | 0.0004 | 18.0 | 108 | 0.9465 | 0.7805 | | 0.0003 | 19.0 | 114 | 0.9461 | 0.7805 | | 0.0003 | 20.0 | 120 | 0.9448 | 0.7805 | | 0.0003 | 21.0 | 126 | 0.9474 | 0.7805 | | 0.0003 | 22.0 | 132 | 0.9525 | 0.7805 | | 0.0003 | 23.0 | 138 | 0.9551 | 0.7805 | | 0.0003 | 24.0 | 144 | 0.9581 | 0.7805 | | 0.0002 | 25.0 | 150 | 0.9626 | 0.7805 | | 0.0002 | 26.0 | 156 | 0.9650 | 0.7805 | | 0.0002 | 27.0 | 162 | 0.9711 | 0.7805 | | 0.0002 | 28.0 | 168 | 0.9713 | 0.7805 | | 0.0002 | 29.0 | 174 | 0.9730 | 0.7805 | | 0.0002 | 30.0 | 180 | 0.9754 | 0.7805 | | 0.0002 | 31.0 | 186 | 0.9786 | 0.7805 | | 0.0002 | 32.0 | 192 | 0.9820 | 0.7805 | | 0.0002 | 33.0 | 198 | 0.9835 | 0.7805 | | 0.0002 | 34.0 | 204 | 0.9850 | 0.7805 | | 0.0002 | 35.0 | 210 | 0.9850 | 0.7805 | | 0.0002 | 36.0 | 216 | 0.9860 | 0.7805 | | 0.0002 | 37.0 | 222 | 0.9866 | 0.7805 | | 0.0002 | 38.0 | 228 | 0.9873 | 0.7805 | | 0.0002 | 39.0 | 234 | 0.9879 | 0.7805 | | 0.0002 | 40.0 | 240 | 0.9883 | 0.7805 | | 0.0002 | 41.0 | 246 | 0.9886 | 0.7805 | | 0.0002 | 42.0 | 252 | 0.9886 | 0.7805 | | 0.0002 | 43.0 | 258 | 0.9886 | 0.7805 | | 0.0002 | 44.0 | 264 | 0.9886 | 0.7805 | | 0.0002 | 45.0 | 270 | 0.9886 | 0.7805 | | 0.0002 | 46.0 | 276 | 0.9886 | 0.7805 | | 0.0002 | 47.0 | 282 | 0.9886 | 0.7805 | | 0.0002 | 48.0 | 288 | 0.9886 | 0.7805 | | 0.0002 | 49.0 | 294 | 0.9886 | 0.7805 | | 0.0002 | 50.0 | 300 | 0.9886 | 0.7805 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1