File size: 4,875 Bytes
52b6d4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_small_adamax_001_fold5
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.926829268292683
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_40x_deit_small_adamax_001_fold5

This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6357
- Accuracy: 0.9268

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2206        | 1.0   | 220   | 1.1411          | 0.6829   |
| 0.1873        | 2.0   | 440   | 0.5940          | 0.8780   |
| 0.0203        | 3.0   | 660   | 0.9936          | 0.7805   |
| 0.0624        | 4.0   | 880   | 0.3597          | 0.9024   |
| 0.0108        | 5.0   | 1100  | 1.3539          | 0.7805   |
| 0.0858        | 6.0   | 1320  | 0.8241          | 0.8049   |
| 0.0246        | 7.0   | 1540  | 1.0359          | 0.8049   |
| 0.0131        | 8.0   | 1760  | 0.7509          | 0.8049   |
| 0.0013        | 9.0   | 1980  | 1.4351          | 0.7805   |
| 0.0095        | 10.0  | 2200  | 1.1916          | 0.7561   |
| 0.0002        | 11.0  | 2420  | 0.7203          | 0.8293   |
| 0.0011        | 12.0  | 2640  | 1.0391          | 0.8293   |
| 0.007         | 13.0  | 2860  | 1.8906          | 0.7317   |
| 0.0002        | 14.0  | 3080  | 0.4058          | 0.9512   |
| 0.0           | 15.0  | 3300  | 0.3547          | 0.9268   |
| 0.0           | 16.0  | 3520  | 0.3764          | 0.9268   |
| 0.0           | 17.0  | 3740  | 0.3894          | 0.9268   |
| 0.0           | 18.0  | 3960  | 0.4031          | 0.9268   |
| 0.0           | 19.0  | 4180  | 0.4138          | 0.9268   |
| 0.0           | 20.0  | 4400  | 0.4231          | 0.9268   |
| 0.0           | 21.0  | 4620  | 0.4326          | 0.9268   |
| 0.0           | 22.0  | 4840  | 0.4413          | 0.9268   |
| 0.0           | 23.0  | 5060  | 0.4490          | 0.9268   |
| 0.0           | 24.0  | 5280  | 0.4564          | 0.9268   |
| 0.0           | 25.0  | 5500  | 0.4638          | 0.9268   |
| 0.0           | 26.0  | 5720  | 0.4710          | 0.9268   |
| 0.0           | 27.0  | 5940  | 0.4779          | 0.9268   |
| 0.0           | 28.0  | 6160  | 0.4851          | 0.9268   |
| 0.0           | 29.0  | 6380  | 0.4923          | 0.9268   |
| 0.0           | 30.0  | 6600  | 0.4998          | 0.9268   |
| 0.0           | 31.0  | 6820  | 0.5069          | 0.9268   |
| 0.0           | 32.0  | 7040  | 0.5143          | 0.9268   |
| 0.0           | 33.0  | 7260  | 0.5224          | 0.9268   |
| 0.0           | 34.0  | 7480  | 0.5303          | 0.9268   |
| 0.0           | 35.0  | 7700  | 0.5381          | 0.9268   |
| 0.0           | 36.0  | 7920  | 0.5458          | 0.9268   |
| 0.0           | 37.0  | 8140  | 0.5543          | 0.9268   |
| 0.0           | 38.0  | 8360  | 0.5622          | 0.9268   |
| 0.0           | 39.0  | 8580  | 0.5706          | 0.9268   |
| 0.0           | 40.0  | 8800  | 0.5791          | 0.9268   |
| 0.0           | 41.0  | 9020  | 0.5871          | 0.9268   |
| 0.0           | 42.0  | 9240  | 0.5951          | 0.9268   |
| 0.0           | 43.0  | 9460  | 0.6028          | 0.9268   |
| 0.0           | 44.0  | 9680  | 0.6101          | 0.9268   |
| 0.0           | 45.0  | 9900  | 0.6166          | 0.9268   |
| 0.0           | 46.0  | 10120 | 0.6227          | 0.9268   |
| 0.0           | 47.0  | 10340 | 0.6281          | 0.9268   |
| 0.0           | 48.0  | 10560 | 0.6322          | 0.9268   |
| 0.0           | 49.0  | 10780 | 0.6350          | 0.9268   |
| 0.0           | 50.0  | 11000 | 0.6357          | 0.9268   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2