--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_small_f1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8 --- # hushem_40x_deit_small_f1 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.7923 - Accuracy: 0.8 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1638 | 0.99 | 53 | 0.4948 | 0.8222 | | 0.018 | 1.99 | 107 | 0.8208 | 0.7556 | | 0.0086 | 3.0 | 161 | 0.6473 | 0.8667 | | 0.0011 | 4.0 | 215 | 0.7960 | 0.7556 | | 0.0003 | 4.99 | 268 | 0.8013 | 0.7556 | | 0.0001 | 5.99 | 322 | 0.8035 | 0.8 | | 0.0001 | 7.0 | 376 | 0.7952 | 0.8 | | 0.0001 | 8.0 | 430 | 0.7939 | 0.8 | | 0.0001 | 8.99 | 483 | 0.7931 | 0.8 | | 0.0001 | 9.86 | 530 | 0.7923 | 0.8 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1