File size: 4,873 Bytes
7eb9a71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_small_sgd_0001_fold4
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5238095238095238
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_40x_deit_small_sgd_0001_fold4

This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1108
- Accuracy: 0.5238

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.763         | 1.0   | 219   | 1.5785          | 0.2857   |
| 1.5719        | 2.0   | 438   | 1.5003          | 0.2857   |
| 1.452         | 3.0   | 657   | 1.4620          | 0.2143   |
| 1.4006        | 4.0   | 876   | 1.4368          | 0.2143   |
| 1.3854        | 5.0   | 1095  | 1.4164          | 0.2143   |
| 1.3041        | 6.0   | 1314  | 1.3988          | 0.2381   |
| 1.296         | 7.0   | 1533  | 1.3830          | 0.2619   |
| 1.276         | 8.0   | 1752  | 1.3685          | 0.2381   |
| 1.2474        | 9.0   | 1971  | 1.3546          | 0.2381   |
| 1.2128        | 10.0  | 2190  | 1.3420          | 0.2381   |
| 1.2113        | 11.0  | 2409  | 1.3297          | 0.2381   |
| 1.2121        | 12.0  | 2628  | 1.3176          | 0.2619   |
| 1.1861        | 13.0  | 2847  | 1.3062          | 0.2619   |
| 1.1756        | 14.0  | 3066  | 1.2946          | 0.3095   |
| 1.1431        | 15.0  | 3285  | 1.2837          | 0.3571   |
| 1.1487        | 16.0  | 3504  | 1.2730          | 0.3095   |
| 1.1705        | 17.0  | 3723  | 1.2625          | 0.3095   |
| 1.1482        | 18.0  | 3942  | 1.2522          | 0.2857   |
| 1.1037        | 19.0  | 4161  | 1.2421          | 0.3095   |
| 1.0872        | 20.0  | 4380  | 1.2325          | 0.3810   |
| 1.1026        | 21.0  | 4599  | 1.2229          | 0.4048   |
| 1.0517        | 22.0  | 4818  | 1.2135          | 0.4048   |
| 1.0226        | 23.0  | 5037  | 1.2052          | 0.4286   |
| 1.0485        | 24.0  | 5256  | 1.1974          | 0.4286   |
| 1.0319        | 25.0  | 5475  | 1.1896          | 0.4286   |
| 0.9983        | 26.0  | 5694  | 1.1821          | 0.4286   |
| 1.0014        | 27.0  | 5913  | 1.1755          | 0.4048   |
| 1.0162        | 28.0  | 6132  | 1.1694          | 0.4048   |
| 0.986         | 29.0  | 6351  | 1.1635          | 0.4048   |
| 0.9747        | 30.0  | 6570  | 1.1582          | 0.4286   |
| 0.9811        | 31.0  | 6789  | 1.1532          | 0.4286   |
| 0.9907        | 32.0  | 7008  | 1.1482          | 0.4286   |
| 0.9904        | 33.0  | 7227  | 1.1437          | 0.4286   |
| 0.9293        | 34.0  | 7446  | 1.1399          | 0.4524   |
| 0.9752        | 35.0  | 7665  | 1.1362          | 0.4524   |
| 0.9789        | 36.0  | 7884  | 1.1326          | 0.4762   |
| 0.9516        | 37.0  | 8103  | 1.1293          | 0.5      |
| 0.9703        | 38.0  | 8322  | 1.1262          | 0.5      |
| 0.8944        | 39.0  | 8541  | 1.1236          | 0.5238   |
| 0.9388        | 40.0  | 8760  | 1.1213          | 0.5238   |
| 0.9573        | 41.0  | 8979  | 1.1191          | 0.5238   |
| 0.9441        | 42.0  | 9198  | 1.1172          | 0.5238   |
| 0.9438        | 43.0  | 9417  | 1.1156          | 0.5238   |
| 0.9221        | 44.0  | 9636  | 1.1141          | 0.5238   |
| 0.9079        | 45.0  | 9855  | 1.1130          | 0.5238   |
| 0.962         | 46.0  | 10074 | 1.1121          | 0.5238   |
| 0.9464        | 47.0  | 10293 | 1.1114          | 0.5238   |
| 0.9323        | 48.0  | 10512 | 1.1110          | 0.5238   |
| 0.9581        | 49.0  | 10731 | 1.1108          | 0.5238   |
| 0.942         | 50.0  | 10950 | 1.1108          | 0.5238   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2