File size: 2,373 Bytes
32b016d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_40x_deit_tiny_f1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8444444444444444
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_40x_deit_tiny_f1
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6177
- Accuracy: 0.8444
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1057 | 1.0 | 107 | 0.4673 | 0.8222 |
| 0.0156 | 2.0 | 214 | 0.4217 | 0.8667 |
| 0.0006 | 2.99 | 321 | 0.3052 | 0.8889 |
| 0.0004 | 4.0 | 429 | 0.7953 | 0.8222 |
| 0.0004 | 5.0 | 536 | 0.2677 | 0.8667 |
| 0.0001 | 6.0 | 643 | 0.5139 | 0.8444 |
| 0.0 | 6.99 | 750 | 0.5825 | 0.8444 |
| 0.0 | 8.0 | 858 | 0.6043 | 0.8444 |
| 0.0 | 9.0 | 965 | 0.6155 | 0.8444 |
| 0.0 | 9.98 | 1070 | 0.6177 | 0.8444 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
|