--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_40x_deit_tiny_f1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8444444444444444 --- # hushem_40x_deit_tiny_f1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6177 - Accuracy: 0.8444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1057 | 1.0 | 107 | 0.4673 | 0.8222 | | 0.0156 | 2.0 | 214 | 0.4217 | 0.8667 | | 0.0006 | 2.99 | 321 | 0.3052 | 0.8889 | | 0.0004 | 4.0 | 429 | 0.7953 | 0.8222 | | 0.0004 | 5.0 | 536 | 0.2677 | 0.8667 | | 0.0001 | 6.0 | 643 | 0.5139 | 0.8444 | | 0.0 | 6.99 | 750 | 0.5825 | 0.8444 | | 0.0 | 8.0 | 858 | 0.6043 | 0.8444 | | 0.0 | 9.0 | 965 | 0.6155 | 0.8444 | | 0.0 | 9.98 | 1070 | 0.6177 | 0.8444 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1