File size: 4,816 Bytes
d10f3e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_small_rms_001_fold1
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.4444444444444444
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hushem_5x_deit_small_rms_001_fold1
This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 4.9688
- Accuracy: 0.4444
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.7253 | 1.0 | 27 | 1.4539 | 0.2444 |
| 1.4329 | 2.0 | 54 | 1.3827 | 0.3556 |
| 1.413 | 3.0 | 81 | 1.4287 | 0.2667 |
| 1.2575 | 4.0 | 108 | 1.2729 | 0.4222 |
| 1.2908 | 5.0 | 135 | 1.8913 | 0.3333 |
| 1.1882 | 6.0 | 162 | 1.1330 | 0.5111 |
| 1.0961 | 7.0 | 189 | 1.6635 | 0.3778 |
| 1.0705 | 8.0 | 216 | 1.0816 | 0.5556 |
| 0.8596 | 9.0 | 243 | 2.1258 | 0.4 |
| 0.8047 | 10.0 | 270 | 1.2784 | 0.4444 |
| 0.7923 | 11.0 | 297 | 2.1314 | 0.3778 |
| 0.7354 | 12.0 | 324 | 1.5632 | 0.3778 |
| 0.7076 | 13.0 | 351 | 1.6923 | 0.4 |
| 0.7272 | 14.0 | 378 | 1.4002 | 0.4222 |
| 0.6359 | 15.0 | 405 | 1.6646 | 0.4 |
| 0.5977 | 16.0 | 432 | 1.6603 | 0.4444 |
| 0.6463 | 17.0 | 459 | 1.5891 | 0.4444 |
| 0.6624 | 18.0 | 486 | 1.8543 | 0.4 |
| 0.5726 | 19.0 | 513 | 1.5545 | 0.5111 |
| 0.5713 | 20.0 | 540 | 1.7099 | 0.4 |
| 0.5626 | 21.0 | 567 | 1.6364 | 0.4 |
| 0.5358 | 22.0 | 594 | 1.8888 | 0.4667 |
| 0.5334 | 23.0 | 621 | 1.9170 | 0.4667 |
| 0.4645 | 24.0 | 648 | 2.0287 | 0.4222 |
| 0.5514 | 25.0 | 675 | 1.5224 | 0.4889 |
| 0.5254 | 26.0 | 702 | 2.4633 | 0.3556 |
| 0.441 | 27.0 | 729 | 1.7933 | 0.4222 |
| 0.3855 | 28.0 | 756 | 2.4673 | 0.4222 |
| 0.4099 | 29.0 | 783 | 2.6353 | 0.4222 |
| 0.4294 | 30.0 | 810 | 2.2588 | 0.4444 |
| 0.3329 | 31.0 | 837 | 2.3858 | 0.4 |
| 0.3787 | 32.0 | 864 | 2.2861 | 0.3333 |
| 0.3457 | 33.0 | 891 | 2.1705 | 0.4222 |
| 0.2509 | 34.0 | 918 | 2.4731 | 0.4222 |
| 0.1898 | 35.0 | 945 | 2.9376 | 0.3111 |
| 0.197 | 36.0 | 972 | 3.2201 | 0.4222 |
| 0.1255 | 37.0 | 999 | 2.5816 | 0.5333 |
| 0.1258 | 38.0 | 1026 | 3.6398 | 0.4 |
| 0.1837 | 39.0 | 1053 | 3.2179 | 0.4222 |
| 0.0881 | 40.0 | 1080 | 3.5990 | 0.4444 |
| 0.0547 | 41.0 | 1107 | 4.2943 | 0.4222 |
| 0.0315 | 42.0 | 1134 | 4.0730 | 0.4222 |
| 0.0187 | 43.0 | 1161 | 4.2944 | 0.4667 |
| 0.0043 | 44.0 | 1188 | 4.5081 | 0.4667 |
| 0.0016 | 45.0 | 1215 | 4.8996 | 0.4444 |
| 0.0009 | 46.0 | 1242 | 4.8993 | 0.4444 |
| 0.0009 | 47.0 | 1269 | 4.9469 | 0.4444 |
| 0.0007 | 48.0 | 1296 | 4.9681 | 0.4444 |
| 0.0006 | 49.0 | 1323 | 4.9688 | 0.4444 |
| 0.0006 | 50.0 | 1350 | 4.9688 | 0.4444 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|