File size: 4,816 Bytes
d10f3e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_small_rms_001_fold1
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.4444444444444444
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_5x_deit_small_rms_001_fold1

This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 4.9688
- Accuracy: 0.4444

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.7253        | 1.0   | 27   | 1.4539          | 0.2444   |
| 1.4329        | 2.0   | 54   | 1.3827          | 0.3556   |
| 1.413         | 3.0   | 81   | 1.4287          | 0.2667   |
| 1.2575        | 4.0   | 108  | 1.2729          | 0.4222   |
| 1.2908        | 5.0   | 135  | 1.8913          | 0.3333   |
| 1.1882        | 6.0   | 162  | 1.1330          | 0.5111   |
| 1.0961        | 7.0   | 189  | 1.6635          | 0.3778   |
| 1.0705        | 8.0   | 216  | 1.0816          | 0.5556   |
| 0.8596        | 9.0   | 243  | 2.1258          | 0.4      |
| 0.8047        | 10.0  | 270  | 1.2784          | 0.4444   |
| 0.7923        | 11.0  | 297  | 2.1314          | 0.3778   |
| 0.7354        | 12.0  | 324  | 1.5632          | 0.3778   |
| 0.7076        | 13.0  | 351  | 1.6923          | 0.4      |
| 0.7272        | 14.0  | 378  | 1.4002          | 0.4222   |
| 0.6359        | 15.0  | 405  | 1.6646          | 0.4      |
| 0.5977        | 16.0  | 432  | 1.6603          | 0.4444   |
| 0.6463        | 17.0  | 459  | 1.5891          | 0.4444   |
| 0.6624        | 18.0  | 486  | 1.8543          | 0.4      |
| 0.5726        | 19.0  | 513  | 1.5545          | 0.5111   |
| 0.5713        | 20.0  | 540  | 1.7099          | 0.4      |
| 0.5626        | 21.0  | 567  | 1.6364          | 0.4      |
| 0.5358        | 22.0  | 594  | 1.8888          | 0.4667   |
| 0.5334        | 23.0  | 621  | 1.9170          | 0.4667   |
| 0.4645        | 24.0  | 648  | 2.0287          | 0.4222   |
| 0.5514        | 25.0  | 675  | 1.5224          | 0.4889   |
| 0.5254        | 26.0  | 702  | 2.4633          | 0.3556   |
| 0.441         | 27.0  | 729  | 1.7933          | 0.4222   |
| 0.3855        | 28.0  | 756  | 2.4673          | 0.4222   |
| 0.4099        | 29.0  | 783  | 2.6353          | 0.4222   |
| 0.4294        | 30.0  | 810  | 2.2588          | 0.4444   |
| 0.3329        | 31.0  | 837  | 2.3858          | 0.4      |
| 0.3787        | 32.0  | 864  | 2.2861          | 0.3333   |
| 0.3457        | 33.0  | 891  | 2.1705          | 0.4222   |
| 0.2509        | 34.0  | 918  | 2.4731          | 0.4222   |
| 0.1898        | 35.0  | 945  | 2.9376          | 0.3111   |
| 0.197         | 36.0  | 972  | 3.2201          | 0.4222   |
| 0.1255        | 37.0  | 999  | 2.5816          | 0.5333   |
| 0.1258        | 38.0  | 1026 | 3.6398          | 0.4      |
| 0.1837        | 39.0  | 1053 | 3.2179          | 0.4222   |
| 0.0881        | 40.0  | 1080 | 3.5990          | 0.4444   |
| 0.0547        | 41.0  | 1107 | 4.2943          | 0.4222   |
| 0.0315        | 42.0  | 1134 | 4.0730          | 0.4222   |
| 0.0187        | 43.0  | 1161 | 4.2944          | 0.4667   |
| 0.0043        | 44.0  | 1188 | 4.5081          | 0.4667   |
| 0.0016        | 45.0  | 1215 | 4.8996          | 0.4444   |
| 0.0009        | 46.0  | 1242 | 4.8993          | 0.4444   |
| 0.0009        | 47.0  | 1269 | 4.9469          | 0.4444   |
| 0.0007        | 48.0  | 1296 | 4.9681          | 0.4444   |
| 0.0006        | 49.0  | 1323 | 4.9688          | 0.4444   |
| 0.0006        | 50.0  | 1350 | 4.9688          | 0.4444   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0