File size: 4,816 Bytes
23c268a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_small_rms_001_fold4
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5952380952380952
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_5x_deit_small_rms_001_fold4

This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6694
- Accuracy: 0.5952

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.1638        | 1.0   | 28   | 1.7503          | 0.2381   |
| 1.4446        | 2.0   | 56   | 1.5611          | 0.2619   |
| 1.4481        | 3.0   | 84   | 1.4312          | 0.2381   |
| 1.3982        | 4.0   | 112  | 1.3919          | 0.2619   |
| 1.3867        | 5.0   | 140  | 1.4053          | 0.2619   |
| 1.382         | 6.0   | 168  | 1.3617          | 0.2619   |
| 1.2911        | 7.0   | 196  | 1.5439          | 0.4048   |
| 1.1486        | 8.0   | 224  | 1.1564          | 0.4286   |
| 1.0554        | 9.0   | 252  | 1.0568          | 0.4762   |
| 1.0402        | 10.0  | 280  | 0.8946          | 0.6190   |
| 0.9192        | 11.0  | 308  | 0.7214          | 0.7381   |
| 1.0116        | 12.0  | 336  | 0.8931          | 0.6905   |
| 0.9735        | 13.0  | 364  | 0.8359          | 0.6905   |
| 0.9105        | 14.0  | 392  | 0.6761          | 0.7619   |
| 0.8218        | 15.0  | 420  | 0.6339          | 0.7857   |
| 0.8745        | 16.0  | 448  | 0.7396          | 0.7619   |
| 0.8355        | 17.0  | 476  | 0.7738          | 0.7381   |
| 0.8644        | 18.0  | 504  | 0.6532          | 0.7619   |
| 0.8014        | 19.0  | 532  | 0.7016          | 0.7381   |
| 0.8685        | 20.0  | 560  | 0.7175          | 0.7381   |
| 0.7709        | 21.0  | 588  | 0.6588          | 0.7619   |
| 0.778         | 22.0  | 616  | 0.8635          | 0.7381   |
| 0.8232        | 23.0  | 644  | 0.6385          | 0.7143   |
| 0.891         | 24.0  | 672  | 0.7133          | 0.6667   |
| 0.714         | 25.0  | 700  | 0.6807          | 0.6905   |
| 0.6766        | 26.0  | 728  | 0.9128          | 0.6429   |
| 0.734         | 27.0  | 756  | 0.7515          | 0.6905   |
| 0.7087        | 28.0  | 784  | 0.6378          | 0.6905   |
| 0.6295        | 29.0  | 812  | 0.9113          | 0.6667   |
| 0.6414        | 30.0  | 840  | 0.9201          | 0.6190   |
| 0.6359        | 31.0  | 868  | 0.7354          | 0.7143   |
| 0.6485        | 32.0  | 896  | 0.6558          | 0.6429   |
| 0.6242        | 33.0  | 924  | 0.7790          | 0.6429   |
| 0.647         | 34.0  | 952  | 1.0490          | 0.5952   |
| 0.6524        | 35.0  | 980  | 0.7508          | 0.6667   |
| 0.5325        | 36.0  | 1008 | 0.9344          | 0.6667   |
| 0.476         | 37.0  | 1036 | 1.0580          | 0.5952   |
| 0.4941        | 38.0  | 1064 | 0.9380          | 0.7143   |
| 0.4232        | 39.0  | 1092 | 1.0384          | 0.5476   |
| 0.4302        | 40.0  | 1120 | 1.0844          | 0.6190   |
| 0.4057        | 41.0  | 1148 | 1.3995          | 0.5952   |
| 0.3483        | 42.0  | 1176 | 1.4823          | 0.5476   |
| 0.3043        | 43.0  | 1204 | 1.2186          | 0.6667   |
| 0.2598        | 44.0  | 1232 | 1.3028          | 0.5952   |
| 0.2113        | 45.0  | 1260 | 1.5042          | 0.6190   |
| 0.2104        | 46.0  | 1288 | 1.6174          | 0.5952   |
| 0.1769        | 47.0  | 1316 | 1.5011          | 0.6429   |
| 0.1341        | 48.0  | 1344 | 1.6784          | 0.5714   |
| 0.1239        | 49.0  | 1372 | 1.6694          | 0.5952   |
| 0.1545        | 50.0  | 1400 | 1.6694          | 0.5952   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0