File size: 4,820 Bytes
27cafee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_small_sgd_00001_fold4
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.2857142857142857
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_5x_deit_small_sgd_00001_fold4

This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4657
- Accuracy: 0.2857

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5422        | 1.0   | 28   | 1.4834          | 0.2619   |
| 1.6237        | 2.0   | 56   | 1.4826          | 0.2619   |
| 1.5562        | 3.0   | 84   | 1.4817          | 0.2619   |
| 1.5833        | 4.0   | 112  | 1.4810          | 0.2619   |
| 1.5467        | 5.0   | 140  | 1.4803          | 0.2619   |
| 1.5372        | 6.0   | 168  | 1.4795          | 0.2857   |
| 1.5683        | 7.0   | 196  | 1.4788          | 0.2857   |
| 1.5057        | 8.0   | 224  | 1.4781          | 0.2857   |
| 1.5994        | 9.0   | 252  | 1.4774          | 0.2857   |
| 1.5076        | 10.0  | 280  | 1.4768          | 0.2857   |
| 1.5466        | 11.0  | 308  | 1.4762          | 0.2857   |
| 1.544         | 12.0  | 336  | 1.4756          | 0.2857   |
| 1.5866        | 13.0  | 364  | 1.4750          | 0.2857   |
| 1.5384        | 14.0  | 392  | 1.4744          | 0.2857   |
| 1.6111        | 15.0  | 420  | 1.4739          | 0.2857   |
| 1.5625        | 16.0  | 448  | 1.4733          | 0.2857   |
| 1.547         | 17.0  | 476  | 1.4728          | 0.2857   |
| 1.5362        | 18.0  | 504  | 1.4723          | 0.2857   |
| 1.5318        | 19.0  | 532  | 1.4718          | 0.2857   |
| 1.5453        | 20.0  | 560  | 1.4714          | 0.2857   |
| 1.5434        | 21.0  | 588  | 1.4709          | 0.2857   |
| 1.548         | 22.0  | 616  | 1.4705          | 0.2857   |
| 1.5105        | 23.0  | 644  | 1.4701          | 0.2857   |
| 1.5176        | 24.0  | 672  | 1.4697          | 0.2857   |
| 1.5194        | 25.0  | 700  | 1.4694          | 0.2857   |
| 1.5543        | 26.0  | 728  | 1.4690          | 0.2857   |
| 1.5727        | 27.0  | 756  | 1.4687          | 0.2857   |
| 1.5476        | 28.0  | 784  | 1.4684          | 0.2857   |
| 1.5163        | 29.0  | 812  | 1.4681          | 0.2857   |
| 1.4767        | 30.0  | 840  | 1.4678          | 0.2857   |
| 1.5623        | 31.0  | 868  | 1.4676          | 0.2857   |
| 1.4924        | 32.0  | 896  | 1.4674          | 0.2857   |
| 1.5673        | 33.0  | 924  | 1.4672          | 0.2857   |
| 1.4842        | 34.0  | 952  | 1.4670          | 0.2857   |
| 1.4908        | 35.0  | 980  | 1.4668          | 0.2857   |
| 1.5184        | 36.0  | 1008 | 1.4666          | 0.2857   |
| 1.5315        | 37.0  | 1036 | 1.4664          | 0.2857   |
| 1.4892        | 38.0  | 1064 | 1.4663          | 0.2857   |
| 1.5241        | 39.0  | 1092 | 1.4662          | 0.2857   |
| 1.5587        | 40.0  | 1120 | 1.4661          | 0.2857   |
| 1.5867        | 41.0  | 1148 | 1.4660          | 0.2857   |
| 1.5357        | 42.0  | 1176 | 1.4659          | 0.2857   |
| 1.479         | 43.0  | 1204 | 1.4659          | 0.2857   |
| 1.4798        | 44.0  | 1232 | 1.4658          | 0.2857   |
| 1.5998        | 45.0  | 1260 | 1.4658          | 0.2857   |
| 1.5487        | 46.0  | 1288 | 1.4658          | 0.2857   |
| 1.5234        | 47.0  | 1316 | 1.4657          | 0.2857   |
| 1.5142        | 48.0  | 1344 | 1.4657          | 0.2857   |
| 1.5259        | 49.0  | 1372 | 1.4657          | 0.2857   |
| 1.5344        | 50.0  | 1400 | 1.4657          | 0.2857   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0