File size: 4,820 Bytes
fdf7b35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_small_sgd_0001_fold3
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.20930232558139536
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_5x_deit_small_sgd_0001_fold3

This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4264
- Accuracy: 0.2093

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5059        | 1.0   | 28   | 1.5906          | 0.2093   |
| 1.4969        | 2.0   | 56   | 1.5795          | 0.2093   |
| 1.4242        | 3.0   | 84   | 1.5692          | 0.2093   |
| 1.4628        | 4.0   | 112  | 1.5599          | 0.2093   |
| 1.5851        | 5.0   | 140  | 1.5506          | 0.2093   |
| 1.4881        | 6.0   | 168  | 1.5418          | 0.2093   |
| 1.4744        | 7.0   | 196  | 1.5338          | 0.2326   |
| 1.427         | 8.0   | 224  | 1.5266          | 0.2558   |
| 1.4274        | 9.0   | 252  | 1.5192          | 0.2558   |
| 1.4168        | 10.0  | 280  | 1.5125          | 0.2558   |
| 1.4418        | 11.0  | 308  | 1.5064          | 0.2558   |
| 1.4361        | 12.0  | 336  | 1.5007          | 0.2558   |
| 1.4139        | 13.0  | 364  | 1.4950          | 0.2558   |
| 1.3932        | 14.0  | 392  | 1.4898          | 0.2558   |
| 1.4041        | 15.0  | 420  | 1.4850          | 0.2326   |
| 1.3745        | 16.0  | 448  | 1.4806          | 0.2326   |
| 1.3653        | 17.0  | 476  | 1.4764          | 0.2093   |
| 1.3841        | 18.0  | 504  | 1.4723          | 0.2093   |
| 1.3735        | 19.0  | 532  | 1.4687          | 0.2093   |
| 1.3391        | 20.0  | 560  | 1.4653          | 0.2093   |
| 1.3879        | 21.0  | 588  | 1.4620          | 0.2093   |
| 1.3861        | 22.0  | 616  | 1.4589          | 0.2093   |
| 1.3726        | 23.0  | 644  | 1.4561          | 0.2093   |
| 1.3725        | 24.0  | 672  | 1.4534          | 0.2093   |
| 1.3587        | 25.0  | 700  | 1.4508          | 0.2093   |
| 1.3359        | 26.0  | 728  | 1.4485          | 0.2093   |
| 1.3627        | 27.0  | 756  | 1.4462          | 0.2326   |
| 1.3855        | 28.0  | 784  | 1.4442          | 0.2326   |
| 1.353         | 29.0  | 812  | 1.4424          | 0.2093   |
| 1.301         | 30.0  | 840  | 1.4407          | 0.2093   |
| 1.3248        | 31.0  | 868  | 1.4390          | 0.2093   |
| 1.3654        | 32.0  | 896  | 1.4375          | 0.2093   |
| 1.364         | 33.0  | 924  | 1.4361          | 0.2093   |
| 1.322         | 34.0  | 952  | 1.4347          | 0.2093   |
| 1.3619        | 35.0  | 980  | 1.4335          | 0.2093   |
| 1.3562        | 36.0  | 1008 | 1.4324          | 0.2093   |
| 1.4034        | 37.0  | 1036 | 1.4314          | 0.2093   |
| 1.3401        | 38.0  | 1064 | 1.4304          | 0.2093   |
| 1.3307        | 39.0  | 1092 | 1.4297          | 0.2093   |
| 1.3736        | 40.0  | 1120 | 1.4290          | 0.2093   |
| 1.3675        | 41.0  | 1148 | 1.4284          | 0.2093   |
| 1.3234        | 42.0  | 1176 | 1.4279          | 0.2093   |
| 1.3321        | 43.0  | 1204 | 1.4274          | 0.2093   |
| 1.3436        | 44.0  | 1232 | 1.4270          | 0.2093   |
| 1.3719        | 45.0  | 1260 | 1.4268          | 0.2093   |
| 1.3462        | 46.0  | 1288 | 1.4266          | 0.2093   |
| 1.3448        | 47.0  | 1316 | 1.4265          | 0.2093   |
| 1.3465        | 48.0  | 1344 | 1.4264          | 0.2093   |
| 1.2951        | 49.0  | 1372 | 1.4264          | 0.2093   |
| 1.3665        | 50.0  | 1400 | 1.4264          | 0.2093   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0