--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_5x_deit_tiny_rms_00001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8571428571428571 --- # hushem_5x_deit_tiny_rms_00001_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6468 - Accuracy: 0.8571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.9751 | 1.0 | 28 | 0.9558 | 0.5952 | | 0.3262 | 2.0 | 56 | 0.4427 | 0.7857 | | 0.1802 | 3.0 | 84 | 0.5387 | 0.6905 | | 0.0709 | 4.0 | 112 | 0.2265 | 0.9524 | | 0.0214 | 5.0 | 140 | 0.1702 | 0.9286 | | 0.0109 | 6.0 | 168 | 0.2332 | 0.9048 | | 0.0028 | 7.0 | 196 | 0.2290 | 0.8810 | | 0.0018 | 8.0 | 224 | 0.2825 | 0.8333 | | 0.0008 | 9.0 | 252 | 0.2950 | 0.8571 | | 0.0005 | 10.0 | 280 | 0.2863 | 0.8571 | | 0.0005 | 11.0 | 308 | 0.3034 | 0.8333 | | 0.0004 | 12.0 | 336 | 0.3163 | 0.8333 | | 0.0003 | 13.0 | 364 | 0.3376 | 0.8571 | | 0.0003 | 14.0 | 392 | 0.3468 | 0.8571 | | 0.0002 | 15.0 | 420 | 0.3710 | 0.8571 | | 0.0002 | 16.0 | 448 | 0.3743 | 0.8571 | | 0.0002 | 17.0 | 476 | 0.3792 | 0.8571 | | 0.0001 | 18.0 | 504 | 0.3947 | 0.8571 | | 0.0001 | 19.0 | 532 | 0.4159 | 0.8571 | | 0.0001 | 20.0 | 560 | 0.4205 | 0.8571 | | 0.0001 | 21.0 | 588 | 0.4289 | 0.8571 | | 0.0001 | 22.0 | 616 | 0.4443 | 0.8571 | | 0.0001 | 23.0 | 644 | 0.4525 | 0.8571 | | 0.0001 | 24.0 | 672 | 0.4613 | 0.8571 | | 0.0001 | 25.0 | 700 | 0.4786 | 0.8571 | | 0.0001 | 26.0 | 728 | 0.4820 | 0.8571 | | 0.0 | 27.0 | 756 | 0.4974 | 0.8571 | | 0.0 | 28.0 | 784 | 0.5096 | 0.8571 | | 0.0 | 29.0 | 812 | 0.5250 | 0.8571 | | 0.0 | 30.0 | 840 | 0.5315 | 0.8571 | | 0.0 | 31.0 | 868 | 0.5411 | 0.8571 | | 0.0 | 32.0 | 896 | 0.5511 | 0.8571 | | 0.0 | 33.0 | 924 | 0.5520 | 0.8571 | | 0.0 | 34.0 | 952 | 0.5719 | 0.8571 | | 0.0 | 35.0 | 980 | 0.5690 | 0.8571 | | 0.0 | 36.0 | 1008 | 0.5797 | 0.8571 | | 0.0 | 37.0 | 1036 | 0.5883 | 0.8571 | | 0.0 | 38.0 | 1064 | 0.5974 | 0.8571 | | 0.0 | 39.0 | 1092 | 0.6092 | 0.8571 | | 0.0 | 40.0 | 1120 | 0.6185 | 0.8571 | | 0.0 | 41.0 | 1148 | 0.6233 | 0.8571 | | 0.0 | 42.0 | 1176 | 0.6279 | 0.8571 | | 0.0 | 43.0 | 1204 | 0.6333 | 0.8571 | | 0.0 | 44.0 | 1232 | 0.6368 | 0.8571 | | 0.0 | 45.0 | 1260 | 0.6401 | 0.8571 | | 0.0 | 46.0 | 1288 | 0.6414 | 0.8571 | | 0.0 | 47.0 | 1316 | 0.6457 | 0.8571 | | 0.0 | 48.0 | 1344 | 0.6468 | 0.8571 | | 0.0 | 49.0 | 1372 | 0.6468 | 0.8571 | | 0.0 | 50.0 | 1400 | 0.6468 | 0.8571 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0