File size: 4,814 Bytes
e9c886f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_tiny_rms_0001_fold1
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6444444444444445
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_5x_deit_tiny_rms_0001_fold1

This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7423
- Accuracy: 0.6444

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.4819        | 1.0   | 27   | 1.3858          | 0.4222   |
| 1.2591        | 2.0   | 54   | 1.5267          | 0.3556   |
| 0.7593        | 3.0   | 81   | 1.2907          | 0.4667   |
| 0.5581        | 4.0   | 108  | 1.8771          | 0.5111   |
| 0.2708        | 5.0   | 135  | 1.1107          | 0.6      |
| 0.0918        | 6.0   | 162  | 1.6349          | 0.6      |
| 0.0815        | 7.0   | 189  | 1.8415          | 0.5556   |
| 0.0759        | 8.0   | 216  | 2.0598          | 0.5778   |
| 0.0537        | 9.0   | 243  | 1.9632          | 0.6222   |
| 0.0015        | 10.0  | 270  | 1.8818          | 0.6444   |
| 0.0003        | 11.0  | 297  | 2.0815          | 0.6222   |
| 0.0001        | 12.0  | 324  | 2.0650          | 0.6444   |
| 0.0001        | 13.0  | 351  | 2.0989          | 0.6444   |
| 0.0001        | 14.0  | 378  | 2.1289          | 0.6444   |
| 0.0001        | 15.0  | 405  | 2.1588          | 0.6444   |
| 0.0001        | 16.0  | 432  | 2.1838          | 0.6222   |
| 0.0001        | 17.0  | 459  | 2.2142          | 0.6444   |
| 0.0           | 18.0  | 486  | 2.2371          | 0.6444   |
| 0.0           | 19.0  | 513  | 2.2604          | 0.6444   |
| 0.0           | 20.0  | 540  | 2.2825          | 0.6444   |
| 0.0           | 21.0  | 567  | 2.3034          | 0.6444   |
| 0.0           | 22.0  | 594  | 2.3271          | 0.6444   |
| 0.0           | 23.0  | 621  | 2.3489          | 0.6444   |
| 0.0           | 24.0  | 648  | 2.3707          | 0.6444   |
| 0.0           | 25.0  | 675  | 2.3919          | 0.6444   |
| 0.0           | 26.0  | 702  | 2.4064          | 0.6444   |
| 0.0           | 27.0  | 729  | 2.4258          | 0.6444   |
| 0.0           | 28.0  | 756  | 2.4479          | 0.6444   |
| 0.0           | 29.0  | 783  | 2.4665          | 0.6444   |
| 0.0           | 30.0  | 810  | 2.4872          | 0.6444   |
| 0.0           | 31.0  | 837  | 2.5073          | 0.6444   |
| 0.0           | 32.0  | 864  | 2.5259          | 0.6444   |
| 0.0           | 33.0  | 891  | 2.5455          | 0.6444   |
| 0.0           | 34.0  | 918  | 2.5641          | 0.6444   |
| 0.0           | 35.0  | 945  | 2.5817          | 0.6444   |
| 0.0           | 36.0  | 972  | 2.6001          | 0.6444   |
| 0.0           | 37.0  | 999  | 2.6164          | 0.6444   |
| 0.0           | 38.0  | 1026 | 2.6335          | 0.6444   |
| 0.0           | 39.0  | 1053 | 2.6484          | 0.6444   |
| 0.0           | 40.0  | 1080 | 2.6642          | 0.6444   |
| 0.0           | 41.0  | 1107 | 2.6789          | 0.6444   |
| 0.0           | 42.0  | 1134 | 2.6927          | 0.6444   |
| 0.0           | 43.0  | 1161 | 2.7058          | 0.6444   |
| 0.0           | 44.0  | 1188 | 2.7171          | 0.6444   |
| 0.0           | 45.0  | 1215 | 2.7264          | 0.6444   |
| 0.0           | 46.0  | 1242 | 2.7343          | 0.6444   |
| 0.0           | 47.0  | 1269 | 2.7400          | 0.6444   |
| 0.0           | 48.0  | 1296 | 2.7423          | 0.6444   |
| 0.0           | 49.0  | 1323 | 2.7423          | 0.6444   |
| 0.0           | 50.0  | 1350 | 2.7423          | 0.6444   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0