File size: 4,814 Bytes
b09fe1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: hushem_5x_deit_tiny_sgd_0001_fold3
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.2558139534883721
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hushem_5x_deit_tiny_sgd_0001_fold3

This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4406
- Accuracy: 0.2558

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5476        | 1.0   | 28   | 1.6881          | 0.2791   |
| 1.5009        | 2.0   | 56   | 1.6672          | 0.2791   |
| 1.493         | 3.0   | 84   | 1.6491          | 0.2791   |
| 1.4757        | 4.0   | 112  | 1.6326          | 0.2791   |
| 1.4183        | 5.0   | 140  | 1.6168          | 0.2791   |
| 1.4727        | 6.0   | 168  | 1.6027          | 0.2791   |
| 1.5064        | 7.0   | 196  | 1.5899          | 0.2791   |
| 1.4575        | 8.0   | 224  | 1.5786          | 0.2791   |
| 1.4566        | 9.0   | 252  | 1.5679          | 0.3023   |
| 1.4332        | 10.0  | 280  | 1.5586          | 0.3023   |
| 1.4461        | 11.0  | 308  | 1.5502          | 0.3023   |
| 1.4527        | 12.0  | 336  | 1.5422          | 0.3023   |
| 1.4102        | 13.0  | 364  | 1.5344          | 0.3023   |
| 1.4234        | 14.0  | 392  | 1.5271          | 0.3023   |
| 1.4638        | 15.0  | 420  | 1.5205          | 0.3023   |
| 1.4171        | 16.0  | 448  | 1.5148          | 0.3023   |
| 1.3787        | 17.0  | 476  | 1.5087          | 0.2791   |
| 1.4195        | 18.0  | 504  | 1.5032          | 0.2791   |
| 1.3909        | 19.0  | 532  | 1.4981          | 0.3256   |
| 1.4469        | 20.0  | 560  | 1.4935          | 0.3023   |
| 1.382         | 21.0  | 588  | 1.4891          | 0.3023   |
| 1.3548        | 22.0  | 616  | 1.4852          | 0.3023   |
| 1.4115        | 23.0  | 644  | 1.4815          | 0.3023   |
| 1.3595        | 24.0  | 672  | 1.4779          | 0.2791   |
| 1.4648        | 25.0  | 700  | 1.4744          | 0.2791   |
| 1.3584        | 26.0  | 728  | 1.4712          | 0.2791   |
| 1.3694        | 27.0  | 756  | 1.4682          | 0.2791   |
| 1.3704        | 28.0  | 784  | 1.4656          | 0.2791   |
| 1.3747        | 29.0  | 812  | 1.4631          | 0.2791   |
| 1.3528        | 30.0  | 840  | 1.4609          | 0.2791   |
| 1.3372        | 31.0  | 868  | 1.4586          | 0.2791   |
| 1.3782        | 32.0  | 896  | 1.4565          | 0.2791   |
| 1.3746        | 33.0  | 924  | 1.4545          | 0.2791   |
| 1.3597        | 34.0  | 952  | 1.4525          | 0.2791   |
| 1.3491        | 35.0  | 980  | 1.4509          | 0.2791   |
| 1.3872        | 36.0  | 1008 | 1.4493          | 0.2791   |
| 1.3595        | 37.0  | 1036 | 1.4478          | 0.2791   |
| 1.3401        | 38.0  | 1064 | 1.4465          | 0.2791   |
| 1.3573        | 39.0  | 1092 | 1.4454          | 0.2791   |
| 1.3488        | 40.0  | 1120 | 1.4444          | 0.2791   |
| 1.3842        | 41.0  | 1148 | 1.4435          | 0.2791   |
| 1.3433        | 42.0  | 1176 | 1.4428          | 0.2558   |
| 1.3592        | 43.0  | 1204 | 1.4421          | 0.2558   |
| 1.3773        | 44.0  | 1232 | 1.4415          | 0.2558   |
| 1.3285        | 45.0  | 1260 | 1.4411          | 0.2558   |
| 1.3374        | 46.0  | 1288 | 1.4408          | 0.2558   |
| 1.3383        | 47.0  | 1316 | 1.4407          | 0.2558   |
| 1.3567        | 48.0  | 1344 | 1.4406          | 0.2558   |
| 1.3494        | 49.0  | 1372 | 1.4406          | 0.2558   |
| 1.2617        | 50.0  | 1400 | 1.4406          | 0.2558   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0