--- license: apache-2.0 base_model: microsoft/beit-large-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_10x_beit_large_adamax_00001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9282136894824707 --- # smids_10x_beit_large_adamax_00001_fold1 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8887 - Accuracy: 0.9282 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1288 | 1.0 | 751 | 0.2785 | 0.9065 | | 0.0676 | 2.0 | 1502 | 0.3146 | 0.9149 | | 0.0264 | 3.0 | 2253 | 0.4181 | 0.9115 | | 0.025 | 4.0 | 3004 | 0.5488 | 0.9199 | | 0.0069 | 5.0 | 3755 | 0.5526 | 0.9182 | | 0.0049 | 6.0 | 4506 | 0.6296 | 0.9165 | | 0.0005 | 7.0 | 5257 | 0.7054 | 0.9149 | | 0.0001 | 8.0 | 6008 | 0.7404 | 0.9182 | | 0.0362 | 9.0 | 6759 | 0.7520 | 0.9132 | | 0.0001 | 10.0 | 7510 | 0.8011 | 0.9149 | | 0.0001 | 11.0 | 8261 | 0.7591 | 0.9199 | | 0.0002 | 12.0 | 9012 | 0.7216 | 0.9215 | | 0.0024 | 13.0 | 9763 | 0.8101 | 0.9132 | | 0.0 | 14.0 | 10514 | 0.8382 | 0.9249 | | 0.0 | 15.0 | 11265 | 0.8571 | 0.9165 | | 0.0 | 16.0 | 12016 | 0.8307 | 0.9249 | | 0.0002 | 17.0 | 12767 | 0.8135 | 0.9098 | | 0.0 | 18.0 | 13518 | 0.9070 | 0.9132 | | 0.0 | 19.0 | 14269 | 0.8650 | 0.9115 | | 0.0 | 20.0 | 15020 | 0.8297 | 0.9265 | | 0.0 | 21.0 | 15771 | 0.8359 | 0.9282 | | 0.0 | 22.0 | 16522 | 0.8827 | 0.9265 | | 0.0 | 23.0 | 17273 | 0.8484 | 0.9215 | | 0.0 | 24.0 | 18024 | 0.8739 | 0.9182 | | 0.0004 | 25.0 | 18775 | 0.8728 | 0.9232 | | 0.0 | 26.0 | 19526 | 0.8742 | 0.9149 | | 0.0 | 27.0 | 20277 | 0.9029 | 0.9199 | | 0.0 | 28.0 | 21028 | 0.8812 | 0.9232 | | 0.0109 | 29.0 | 21779 | 0.9326 | 0.9215 | | 0.0 | 30.0 | 22530 | 0.9197 | 0.9115 | | 0.0001 | 31.0 | 23281 | 0.8910 | 0.9215 | | 0.0 | 32.0 | 24032 | 0.8659 | 0.9215 | | 0.0 | 33.0 | 24783 | 0.8759 | 0.9232 | | 0.0 | 34.0 | 25534 | 0.9176 | 0.9199 | | 0.0 | 35.0 | 26285 | 0.8674 | 0.9249 | | 0.0 | 36.0 | 27036 | 0.8364 | 0.9249 | | 0.0 | 37.0 | 27787 | 0.8518 | 0.9265 | | 0.0 | 38.0 | 28538 | 0.8614 | 0.9232 | | 0.0 | 39.0 | 29289 | 0.8789 | 0.9215 | | 0.0 | 40.0 | 30040 | 0.8979 | 0.9215 | | 0.0 | 41.0 | 30791 | 0.9262 | 0.9199 | | 0.0107 | 42.0 | 31542 | 0.8969 | 0.9232 | | 0.0 | 43.0 | 32293 | 0.9021 | 0.9265 | | 0.0 | 44.0 | 33044 | 0.8921 | 0.9282 | | 0.0 | 45.0 | 33795 | 0.9002 | 0.9249 | | 0.0007 | 46.0 | 34546 | 0.9147 | 0.9199 | | 0.0 | 47.0 | 35297 | 0.8904 | 0.9249 | | 0.0 | 48.0 | 36048 | 0.8842 | 0.9282 | | 0.0 | 49.0 | 36799 | 0.8899 | 0.9265 | | 0.0 | 50.0 | 37550 | 0.8887 | 0.9282 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2