--- license: apache-2.0 base_model: microsoft/beit-large-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_10x_beit_large_adamax_001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8535773710482529 --- # smids_10x_beit_large_adamax_001_fold2 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.4058 - Accuracy: 0.8536 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6414 | 1.0 | 750 | 0.6828 | 0.6639 | | 0.5428 | 2.0 | 1500 | 0.5438 | 0.7754 | | 0.4614 | 3.0 | 2250 | 0.4523 | 0.8336 | | 0.4233 | 4.0 | 3000 | 0.4215 | 0.8236 | | 0.4304 | 5.0 | 3750 | 0.4599 | 0.7903 | | 0.3335 | 6.0 | 4500 | 0.4118 | 0.8336 | | 0.3481 | 7.0 | 5250 | 0.4939 | 0.8253 | | 0.3092 | 8.0 | 6000 | 0.4308 | 0.8486 | | 0.2568 | 9.0 | 6750 | 0.4756 | 0.8353 | | 0.331 | 10.0 | 7500 | 0.4715 | 0.8619 | | 0.2403 | 11.0 | 8250 | 0.5349 | 0.8469 | | 0.2162 | 12.0 | 9000 | 0.5922 | 0.8136 | | 0.2489 | 13.0 | 9750 | 0.5818 | 0.8419 | | 0.0972 | 14.0 | 10500 | 0.6218 | 0.8419 | | 0.1212 | 15.0 | 11250 | 0.5371 | 0.8436 | | 0.1175 | 16.0 | 12000 | 0.6818 | 0.8286 | | 0.1011 | 17.0 | 12750 | 0.8719 | 0.8120 | | 0.179 | 18.0 | 13500 | 0.7106 | 0.8486 | | 0.1325 | 19.0 | 14250 | 0.6119 | 0.8552 | | 0.111 | 20.0 | 15000 | 0.7905 | 0.8552 | | 0.0431 | 21.0 | 15750 | 0.8636 | 0.8469 | | 0.0973 | 22.0 | 16500 | 0.9921 | 0.8403 | | 0.0529 | 23.0 | 17250 | 0.7563 | 0.8536 | | 0.1212 | 24.0 | 18000 | 1.1228 | 0.8103 | | 0.0377 | 25.0 | 18750 | 1.0572 | 0.8386 | | 0.035 | 26.0 | 19500 | 0.8767 | 0.8536 | | 0.0591 | 27.0 | 20250 | 0.9535 | 0.8652 | | 0.0188 | 28.0 | 21000 | 1.1035 | 0.8536 | | 0.0402 | 29.0 | 21750 | 1.1575 | 0.8586 | | 0.0333 | 30.0 | 22500 | 1.1473 | 0.8669 | | 0.0255 | 31.0 | 23250 | 1.0948 | 0.8469 | | 0.0283 | 32.0 | 24000 | 1.4345 | 0.8419 | | 0.0262 | 33.0 | 24750 | 1.1277 | 0.8552 | | 0.0004 | 34.0 | 25500 | 1.2002 | 0.8519 | | 0.0058 | 35.0 | 26250 | 1.1085 | 0.8586 | | 0.0265 | 36.0 | 27000 | 1.2506 | 0.8436 | | 0.0298 | 37.0 | 27750 | 1.1890 | 0.8602 | | 0.0146 | 38.0 | 28500 | 1.5719 | 0.8486 | | 0.0266 | 39.0 | 29250 | 1.2137 | 0.8486 | | 0.0079 | 40.0 | 30000 | 1.2207 | 0.8586 | | 0.0077 | 41.0 | 30750 | 1.1783 | 0.8636 | | 0.0004 | 42.0 | 31500 | 1.2606 | 0.8552 | | 0.0014 | 43.0 | 32250 | 1.6455 | 0.8453 | | 0.0004 | 44.0 | 33000 | 1.4264 | 0.8436 | | 0.015 | 45.0 | 33750 | 1.4403 | 0.8536 | | 0.0002 | 46.0 | 34500 | 1.2419 | 0.8552 | | 0.002 | 47.0 | 35250 | 1.3338 | 0.8536 | | 0.0101 | 48.0 | 36000 | 1.5464 | 0.8469 | | 0.0086 | 49.0 | 36750 | 1.3979 | 0.8536 | | 0.0061 | 50.0 | 37500 | 1.4058 | 0.8536 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2