File size: 4,875 Bytes
50abc3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
---
license: apache-2.0
base_model: microsoft/beit-large-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_10x_beit_large_sgd_00001_fold5
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: test
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6316666666666667
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# smids_10x_beit_large_sgd_00001_fold5
This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8273
- Accuracy: 0.6317
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.2351 | 1.0 | 750 | 1.2384 | 0.335 |
| 1.188 | 2.0 | 1500 | 1.2067 | 0.3417 |
| 1.1425 | 3.0 | 2250 | 1.1794 | 0.35 |
| 1.0663 | 4.0 | 3000 | 1.1549 | 0.36 |
| 1.0302 | 5.0 | 3750 | 1.1332 | 0.3733 |
| 1.0803 | 6.0 | 4500 | 1.1133 | 0.3783 |
| 1.0194 | 7.0 | 5250 | 1.0948 | 0.395 |
| 1.041 | 8.0 | 6000 | 1.0776 | 0.4133 |
| 0.958 | 9.0 | 6750 | 1.0617 | 0.4267 |
| 0.9328 | 10.0 | 7500 | 1.0465 | 0.44 |
| 0.9293 | 11.0 | 8250 | 1.0324 | 0.4533 |
| 0.9087 | 12.0 | 9000 | 1.0189 | 0.465 |
| 0.9387 | 13.0 | 9750 | 1.0063 | 0.4783 |
| 0.8996 | 14.0 | 10500 | 0.9944 | 0.4933 |
| 0.8606 | 15.0 | 11250 | 0.9830 | 0.5083 |
| 0.8536 | 16.0 | 12000 | 0.9723 | 0.5117 |
| 0.8222 | 17.0 | 12750 | 0.9621 | 0.5217 |
| 0.8298 | 18.0 | 13500 | 0.9525 | 0.53 |
| 0.9106 | 19.0 | 14250 | 0.9434 | 0.54 |
| 0.8462 | 20.0 | 15000 | 0.9347 | 0.5483 |
| 0.8209 | 21.0 | 15750 | 0.9265 | 0.5533 |
| 0.8393 | 22.0 | 16500 | 0.9186 | 0.5583 |
| 0.8236 | 23.0 | 17250 | 0.9111 | 0.565 |
| 0.8476 | 24.0 | 18000 | 0.9042 | 0.5717 |
| 0.7925 | 25.0 | 18750 | 0.8975 | 0.5733 |
| 0.8294 | 26.0 | 19500 | 0.8913 | 0.5817 |
| 0.7415 | 27.0 | 20250 | 0.8856 | 0.585 |
| 0.8113 | 28.0 | 21000 | 0.8800 | 0.585 |
| 0.8087 | 29.0 | 21750 | 0.8747 | 0.5833 |
| 0.8087 | 30.0 | 22500 | 0.8698 | 0.59 |
| 0.7723 | 31.0 | 23250 | 0.8652 | 0.595 |
| 0.7864 | 32.0 | 24000 | 0.8609 | 0.6033 |
| 0.7882 | 33.0 | 24750 | 0.8569 | 0.6083 |
| 0.7814 | 34.0 | 25500 | 0.8532 | 0.61 |
| 0.8053 | 35.0 | 26250 | 0.8498 | 0.6117 |
| 0.7759 | 36.0 | 27000 | 0.8467 | 0.6167 |
| 0.73 | 37.0 | 27750 | 0.8438 | 0.6167 |
| 0.8437 | 38.0 | 28500 | 0.8412 | 0.6183 |
| 0.7621 | 39.0 | 29250 | 0.8389 | 0.6183 |
| 0.719 | 40.0 | 30000 | 0.8367 | 0.6217 |
| 0.7491 | 41.0 | 30750 | 0.8348 | 0.625 |
| 0.7887 | 42.0 | 31500 | 0.8332 | 0.625 |
| 0.8254 | 43.0 | 32250 | 0.8317 | 0.625 |
| 0.7337 | 44.0 | 33000 | 0.8305 | 0.6267 |
| 0.7762 | 45.0 | 33750 | 0.8295 | 0.6283 |
| 0.7277 | 46.0 | 34500 | 0.8286 | 0.6317 |
| 0.7733 | 47.0 | 35250 | 0.8280 | 0.6317 |
| 0.7249 | 48.0 | 36000 | 0.8276 | 0.6317 |
| 0.7591 | 49.0 | 36750 | 0.8274 | 0.6317 |
| 0.7103 | 50.0 | 37500 | 0.8273 | 0.6317 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2
|