File size: 4,878 Bytes
b319f27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: smids_10x_deit_small_adamax_00001_fold1
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9065108514190318
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# smids_10x_deit_small_adamax_00001_fold1

This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8282
- Accuracy: 0.9065

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2758        | 1.0   | 751   | 0.3168          | 0.8831   |
| 0.1955        | 2.0   | 1502  | 0.2645          | 0.9032   |
| 0.1342        | 3.0   | 2253  | 0.2464          | 0.9115   |
| 0.0581        | 4.0   | 3004  | 0.2670          | 0.9032   |
| 0.0977        | 5.0   | 3755  | 0.3303          | 0.9115   |
| 0.0404        | 6.0   | 4506  | 0.3924          | 0.9048   |
| 0.0407        | 7.0   | 5257  | 0.4392          | 0.9098   |
| 0.0229        | 8.0   | 6008  | 0.5277          | 0.9132   |
| 0.023         | 9.0   | 6759  | 0.5759          | 0.9115   |
| 0.016         | 10.0  | 7510  | 0.6280          | 0.9032   |
| 0.0002        | 11.0  | 8261  | 0.6513          | 0.9098   |
| 0.0008        | 12.0  | 9012  | 0.6409          | 0.9182   |
| 0.006         | 13.0  | 9763  | 0.6473          | 0.9199   |
| 0.0           | 14.0  | 10514 | 0.7396          | 0.9065   |
| 0.0           | 15.0  | 11265 | 0.7703          | 0.9065   |
| 0.0           | 16.0  | 12016 | 0.7534          | 0.9065   |
| 0.0001        | 17.0  | 12767 | 0.8086          | 0.9032   |
| 0.0           | 18.0  | 13518 | 0.7937          | 0.9032   |
| 0.0           | 19.0  | 14269 | 0.7606          | 0.9165   |
| 0.0           | 20.0  | 15020 | 0.8234          | 0.9065   |
| 0.0001        | 21.0  | 15771 | 0.7617          | 0.9149   |
| 0.0           | 22.0  | 16522 | 0.8024          | 0.9015   |
| 0.0           | 23.0  | 17273 | 0.8089          | 0.9065   |
| 0.0           | 24.0  | 18024 | 0.8495          | 0.9015   |
| 0.0           | 25.0  | 18775 | 0.7997          | 0.9115   |
| 0.0           | 26.0  | 19526 | 0.8566          | 0.9015   |
| 0.0           | 27.0  | 20277 | 0.8140          | 0.9065   |
| 0.0           | 28.0  | 21028 | 0.8138          | 0.9065   |
| 0.0073        | 29.0  | 21779 | 0.7958          | 0.9082   |
| 0.0           | 30.0  | 22530 | 0.8037          | 0.9115   |
| 0.0           | 31.0  | 23281 | 0.8741          | 0.9032   |
| 0.0           | 32.0  | 24032 | 0.8298          | 0.9082   |
| 0.0           | 33.0  | 24783 | 0.8730          | 0.9015   |
| 0.0           | 34.0  | 25534 | 0.8840          | 0.8982   |
| 0.0           | 35.0  | 26285 | 0.8051          | 0.9132   |
| 0.0           | 36.0  | 27036 | 0.8192          | 0.9115   |
| 0.0           | 37.0  | 27787 | 0.8059          | 0.9132   |
| 0.0           | 38.0  | 28538 | 0.8065          | 0.9149   |
| 0.0           | 39.0  | 29289 | 0.8139          | 0.9132   |
| 0.0           | 40.0  | 30040 | 0.8141          | 0.9132   |
| 0.0           | 41.0  | 30791 | 0.8317          | 0.9098   |
| 0.0           | 42.0  | 31542 | 0.8371          | 0.9048   |
| 0.0           | 43.0  | 32293 | 0.8394          | 0.9032   |
| 0.0           | 44.0  | 33044 | 0.8362          | 0.9048   |
| 0.0           | 45.0  | 33795 | 0.8367          | 0.9048   |
| 0.0           | 46.0  | 34546 | 0.8416          | 0.9032   |
| 0.0           | 47.0  | 35297 | 0.8349          | 0.9048   |
| 0.0           | 48.0  | 36048 | 0.8314          | 0.9065   |
| 0.0           | 49.0  | 36799 | 0.8317          | 0.9065   |
| 0.0           | 50.0  | 37550 | 0.8282          | 0.9065   |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.1.0+cu121
- Datasets 2.12.0
- Tokenizers 0.13.2