--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_10x_deit_small_sgd_00001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5483333333333333 --- # smids_10x_deit_small_sgd_00001_fold3 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9545 - Accuracy: 0.5483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.0617 | 1.0 | 750 | 1.0842 | 0.3733 | | 1.0585 | 2.0 | 1500 | 1.0794 | 0.37 | | 1.0424 | 3.0 | 2250 | 1.0744 | 0.3733 | | 1.0456 | 4.0 | 3000 | 1.0693 | 0.3767 | | 1.0291 | 5.0 | 3750 | 1.0643 | 0.3833 | | 1.0038 | 6.0 | 4500 | 1.0594 | 0.3917 | | 1.0218 | 7.0 | 5250 | 1.0545 | 0.4017 | | 1.0056 | 8.0 | 6000 | 1.0497 | 0.4083 | | 0.9993 | 9.0 | 6750 | 1.0451 | 0.4133 | | 0.9987 | 10.0 | 7500 | 1.0406 | 0.4233 | | 1.005 | 11.0 | 8250 | 1.0361 | 0.43 | | 0.9768 | 12.0 | 9000 | 1.0318 | 0.4367 | | 0.9767 | 13.0 | 9750 | 1.0276 | 0.4383 | | 0.9832 | 14.0 | 10500 | 1.0235 | 0.4417 | | 0.9795 | 15.0 | 11250 | 1.0196 | 0.4517 | | 0.9438 | 16.0 | 12000 | 1.0158 | 0.47 | | 0.9511 | 17.0 | 12750 | 1.0122 | 0.4733 | | 0.9685 | 18.0 | 13500 | 1.0086 | 0.475 | | 0.9616 | 19.0 | 14250 | 1.0051 | 0.4833 | | 0.9593 | 20.0 | 15000 | 1.0018 | 0.485 | | 0.9173 | 21.0 | 15750 | 0.9985 | 0.49 | | 0.9516 | 22.0 | 16500 | 0.9954 | 0.5017 | | 0.9352 | 23.0 | 17250 | 0.9923 | 0.5033 | | 0.9563 | 24.0 | 18000 | 0.9894 | 0.5083 | | 0.9134 | 25.0 | 18750 | 0.9866 | 0.5117 | | 0.9284 | 26.0 | 19500 | 0.9839 | 0.515 | | 0.8974 | 27.0 | 20250 | 0.9813 | 0.52 | | 0.9371 | 28.0 | 21000 | 0.9789 | 0.52 | | 0.8946 | 29.0 | 21750 | 0.9765 | 0.5283 | | 0.9089 | 30.0 | 22500 | 0.9743 | 0.5317 | | 0.9026 | 31.0 | 23250 | 0.9722 | 0.5333 | | 0.9027 | 32.0 | 24000 | 0.9702 | 0.5317 | | 0.9034 | 33.0 | 24750 | 0.9683 | 0.5333 | | 0.9095 | 34.0 | 25500 | 0.9666 | 0.5333 | | 0.8767 | 35.0 | 26250 | 0.9650 | 0.5367 | | 0.8854 | 36.0 | 27000 | 0.9635 | 0.5367 | | 0.8862 | 37.0 | 27750 | 0.9621 | 0.5367 | | 0.9211 | 38.0 | 28500 | 0.9608 | 0.5367 | | 0.8993 | 39.0 | 29250 | 0.9597 | 0.535 | | 0.8897 | 40.0 | 30000 | 0.9587 | 0.5383 | | 0.8933 | 41.0 | 30750 | 0.9578 | 0.5417 | | 0.8954 | 42.0 | 31500 | 0.9571 | 0.5483 | | 0.887 | 43.0 | 32250 | 0.9564 | 0.5483 | | 0.902 | 44.0 | 33000 | 0.9558 | 0.5483 | | 0.8561 | 45.0 | 33750 | 0.9554 | 0.5483 | | 0.8814 | 46.0 | 34500 | 0.9551 | 0.5483 | | 0.8975 | 47.0 | 35250 | 0.9548 | 0.5483 | | 0.8624 | 48.0 | 36000 | 0.9546 | 0.5483 | | 0.8832 | 49.0 | 36750 | 0.9546 | 0.5483 | | 0.8754 | 50.0 | 37500 | 0.9545 | 0.5483 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2