--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_10x_deit_tiny_adamax_001_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.8948247078464107 --- # smids_10x_deit_tiny_adamax_001_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1377 - Accuracy: 0.8948 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.387 | 1.0 | 751 | 0.3856 | 0.8447 | | 0.2275 | 2.0 | 1502 | 0.3799 | 0.8497 | | 0.1732 | 3.0 | 2253 | 0.3628 | 0.8898 | | 0.1418 | 4.0 | 3004 | 0.3720 | 0.8848 | | 0.1851 | 5.0 | 3755 | 0.4163 | 0.8497 | | 0.1168 | 6.0 | 4506 | 0.4228 | 0.8915 | | 0.1217 | 7.0 | 5257 | 0.4050 | 0.8965 | | 0.0972 | 8.0 | 6008 | 0.4659 | 0.8881 | | 0.0717 | 9.0 | 6759 | 0.4692 | 0.8848 | | 0.0615 | 10.0 | 7510 | 0.5939 | 0.8748 | | 0.0582 | 11.0 | 8261 | 0.5202 | 0.8898 | | 0.0569 | 12.0 | 9012 | 0.5681 | 0.8982 | | 0.0142 | 13.0 | 9763 | 0.7223 | 0.8815 | | 0.0849 | 14.0 | 10514 | 0.6292 | 0.8948 | | 0.0289 | 15.0 | 11265 | 0.7113 | 0.8898 | | 0.0438 | 16.0 | 12016 | 0.6702 | 0.8982 | | 0.0561 | 17.0 | 12767 | 0.7629 | 0.8765 | | 0.0013 | 18.0 | 13518 | 0.7639 | 0.8865 | | 0.0173 | 19.0 | 14269 | 0.6756 | 0.8965 | | 0.0044 | 20.0 | 15020 | 0.7365 | 0.8965 | | 0.013 | 21.0 | 15771 | 0.8044 | 0.8831 | | 0.0056 | 22.0 | 16522 | 0.7938 | 0.8915 | | 0.0006 | 23.0 | 17273 | 0.8954 | 0.8848 | | 0.0157 | 24.0 | 18024 | 0.8083 | 0.8998 | | 0.0002 | 25.0 | 18775 | 0.8156 | 0.8965 | | 0.0001 | 26.0 | 19526 | 0.8204 | 0.8982 | | 0.0087 | 27.0 | 20277 | 0.8556 | 0.8948 | | 0.0001 | 28.0 | 21028 | 0.8189 | 0.9048 | | 0.0132 | 29.0 | 21779 | 0.8401 | 0.9065 | | 0.0001 | 30.0 | 22530 | 0.9274 | 0.8915 | | 0.0 | 31.0 | 23281 | 0.9668 | 0.8965 | | 0.0153 | 32.0 | 24032 | 0.9746 | 0.8932 | | 0.0 | 33.0 | 24783 | 1.0269 | 0.8881 | | 0.0 | 34.0 | 25534 | 1.0125 | 0.8948 | | 0.0 | 35.0 | 26285 | 1.0419 | 0.8898 | | 0.0003 | 36.0 | 27036 | 1.0764 | 0.8898 | | 0.0 | 37.0 | 27787 | 1.0824 | 0.8915 | | 0.0 | 38.0 | 28538 | 1.0882 | 0.8898 | | 0.0 | 39.0 | 29289 | 1.0563 | 0.8932 | | 0.0 | 40.0 | 30040 | 1.0771 | 0.8915 | | 0.0 | 41.0 | 30791 | 1.0705 | 0.8948 | | 0.0 | 42.0 | 31542 | 1.0752 | 0.8932 | | 0.0 | 43.0 | 32293 | 1.1011 | 0.8948 | | 0.0 | 44.0 | 33044 | 1.1049 | 0.8948 | | 0.0 | 45.0 | 33795 | 1.1132 | 0.8948 | | 0.0 | 46.0 | 34546 | 1.1208 | 0.8965 | | 0.0 | 47.0 | 35297 | 1.1280 | 0.8948 | | 0.0 | 48.0 | 36048 | 1.1328 | 0.8948 | | 0.0 | 49.0 | 36799 | 1.1361 | 0.8948 | | 0.0 | 50.0 | 37550 | 1.1377 | 0.8948 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2