--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_10x_deit_tiny_adamax_001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9001663893510815 --- # smids_10x_deit_tiny_adamax_001_fold2 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0691 - Accuracy: 0.9002 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.3362 | 1.0 | 750 | 0.3519 | 0.8652 | | 0.2971 | 2.0 | 1500 | 0.3131 | 0.8918 | | 0.1771 | 3.0 | 2250 | 0.2717 | 0.8885 | | 0.2985 | 4.0 | 3000 | 0.3652 | 0.8652 | | 0.1399 | 5.0 | 3750 | 0.3216 | 0.9018 | | 0.1317 | 6.0 | 4500 | 0.3948 | 0.8802 | | 0.1309 | 7.0 | 5250 | 0.3860 | 0.8902 | | 0.1165 | 8.0 | 6000 | 0.4557 | 0.8852 | | 0.0308 | 9.0 | 6750 | 0.5032 | 0.8686 | | 0.0315 | 10.0 | 7500 | 0.4981 | 0.8769 | | 0.0974 | 11.0 | 8250 | 0.6363 | 0.8769 | | 0.1017 | 12.0 | 9000 | 0.5021 | 0.8869 | | 0.0475 | 13.0 | 9750 | 0.5896 | 0.8885 | | 0.0086 | 14.0 | 10500 | 0.6931 | 0.8918 | | 0.0301 | 15.0 | 11250 | 0.6531 | 0.8902 | | 0.0049 | 16.0 | 12000 | 0.7157 | 0.8819 | | 0.0307 | 17.0 | 12750 | 0.7054 | 0.8935 | | 0.0113 | 18.0 | 13500 | 0.7646 | 0.8869 | | 0.0492 | 19.0 | 14250 | 0.7424 | 0.8885 | | 0.0093 | 20.0 | 15000 | 0.6366 | 0.8952 | | 0.011 | 21.0 | 15750 | 0.8426 | 0.8885 | | 0.0191 | 22.0 | 16500 | 0.7557 | 0.8952 | | 0.0047 | 23.0 | 17250 | 0.7578 | 0.8885 | | 0.0163 | 24.0 | 18000 | 0.8275 | 0.8902 | | 0.0001 | 25.0 | 18750 | 0.8176 | 0.8935 | | 0.0023 | 26.0 | 19500 | 0.8054 | 0.8968 | | 0.0181 | 27.0 | 20250 | 0.8270 | 0.8952 | | 0.0 | 28.0 | 21000 | 0.8173 | 0.9035 | | 0.0001 | 29.0 | 21750 | 0.8348 | 0.9018 | | 0.0 | 30.0 | 22500 | 0.8105 | 0.9101 | | 0.0 | 31.0 | 23250 | 0.7837 | 0.9118 | | 0.0 | 32.0 | 24000 | 0.9929 | 0.8935 | | 0.0 | 33.0 | 24750 | 0.8103 | 0.9085 | | 0.0 | 34.0 | 25500 | 0.8769 | 0.9035 | | 0.0 | 35.0 | 26250 | 0.8987 | 0.8985 | | 0.0 | 36.0 | 27000 | 1.0129 | 0.9002 | | 0.0053 | 37.0 | 27750 | 0.9506 | 0.9068 | | 0.0 | 38.0 | 28500 | 1.0495 | 0.8935 | | 0.0 | 39.0 | 29250 | 0.9869 | 0.9018 | | 0.0 | 40.0 | 30000 | 1.0087 | 0.8968 | | 0.0 | 41.0 | 30750 | 1.0348 | 0.8985 | | 0.0 | 42.0 | 31500 | 1.0299 | 0.8985 | | 0.0 | 43.0 | 32250 | 1.0437 | 0.8968 | | 0.0 | 44.0 | 33000 | 1.0468 | 0.8985 | | 0.0028 | 45.0 | 33750 | 1.0539 | 0.9002 | | 0.0 | 46.0 | 34500 | 1.0588 | 0.9002 | | 0.0 | 47.0 | 35250 | 1.0567 | 0.9002 | | 0.0 | 48.0 | 36000 | 1.0631 | 0.9002 | | 0.0 | 49.0 | 36750 | 1.0673 | 0.9002 | | 0.0 | 50.0 | 37500 | 1.0691 | 0.9002 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.1+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2