--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_1x_deit_small_sgd_00001_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5041597337770383 --- # smids_1x_deit_small_sgd_00001_fold2 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0336 - Accuracy: 0.5042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0925 | 1.0 | 75 | 1.0713 | 0.4343 | | 1.0735 | 2.0 | 150 | 1.0692 | 0.4343 | | 1.0724 | 3.0 | 225 | 1.0673 | 0.4393 | | 1.0873 | 4.0 | 300 | 1.0654 | 0.4426 | | 1.1019 | 5.0 | 375 | 1.0637 | 0.4426 | | 1.0577 | 6.0 | 450 | 1.0620 | 0.4459 | | 1.0861 | 7.0 | 525 | 1.0604 | 0.4493 | | 1.0644 | 8.0 | 600 | 1.0588 | 0.4542 | | 1.0424 | 9.0 | 675 | 1.0573 | 0.4509 | | 1.0503 | 10.0 | 750 | 1.0559 | 0.4509 | | 1.0641 | 11.0 | 825 | 1.0545 | 0.4493 | | 1.0679 | 12.0 | 900 | 1.0532 | 0.4526 | | 1.0629 | 13.0 | 975 | 1.0520 | 0.4542 | | 1.0438 | 14.0 | 1050 | 1.0508 | 0.4542 | | 1.061 | 15.0 | 1125 | 1.0497 | 0.4509 | | 1.0498 | 16.0 | 1200 | 1.0486 | 0.4509 | | 1.0521 | 17.0 | 1275 | 1.0475 | 0.4559 | | 1.0469 | 18.0 | 1350 | 1.0466 | 0.4576 | | 1.047 | 19.0 | 1425 | 1.0456 | 0.4609 | | 1.0592 | 20.0 | 1500 | 1.0447 | 0.4659 | | 1.0668 | 21.0 | 1575 | 1.0439 | 0.4709 | | 1.0281 | 22.0 | 1650 | 1.0431 | 0.4725 | | 1.0356 | 23.0 | 1725 | 1.0423 | 0.4775 | | 1.026 | 24.0 | 1800 | 1.0416 | 0.4775 | | 1.0466 | 25.0 | 1875 | 1.0409 | 0.4792 | | 1.0451 | 26.0 | 1950 | 1.0402 | 0.4809 | | 1.0338 | 27.0 | 2025 | 1.0396 | 0.4859 | | 1.0199 | 28.0 | 2100 | 1.0390 | 0.4842 | | 1.0289 | 29.0 | 2175 | 1.0384 | 0.4875 | | 1.0316 | 30.0 | 2250 | 1.0379 | 0.4908 | | 1.0446 | 31.0 | 2325 | 1.0374 | 0.4925 | | 1.0407 | 32.0 | 2400 | 1.0369 | 0.4925 | | 1.0163 | 33.0 | 2475 | 1.0365 | 0.4925 | | 1.0508 | 34.0 | 2550 | 1.0361 | 0.4925 | | 1.024 | 35.0 | 2625 | 1.0358 | 0.4942 | | 1.0435 | 36.0 | 2700 | 1.0354 | 0.4958 | | 1.0618 | 37.0 | 2775 | 1.0351 | 0.4958 | | 1.0365 | 38.0 | 2850 | 1.0349 | 0.4975 | | 1.0269 | 39.0 | 2925 | 1.0346 | 0.4992 | | 1.0291 | 40.0 | 3000 | 1.0344 | 0.5008 | | 1.0505 | 41.0 | 3075 | 1.0342 | 0.5008 | | 1.0316 | 42.0 | 3150 | 1.0340 | 0.5008 | | 1.0295 | 43.0 | 3225 | 1.0339 | 0.5008 | | 1.049 | 44.0 | 3300 | 1.0338 | 0.5008 | | 1.0556 | 45.0 | 3375 | 1.0337 | 0.5008 | | 1.0458 | 46.0 | 3450 | 1.0336 | 0.5008 | | 1.0348 | 47.0 | 3525 | 1.0336 | 0.5008 | | 1.0496 | 48.0 | 3600 | 1.0336 | 0.5025 | | 1.0321 | 49.0 | 3675 | 1.0336 | 0.5042 | | 1.0497 | 50.0 | 3750 | 1.0336 | 0.5042 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0