--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_1x_deit_small_sgd_00001_fold3 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.47 --- # smids_1x_deit_small_sgd_00001_fold3 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0491 - Accuracy: 0.47 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0941 | 1.0 | 75 | 1.0867 | 0.3867 | | 1.1031 | 2.0 | 150 | 1.0847 | 0.3883 | | 1.0678 | 3.0 | 225 | 1.0827 | 0.39 | | 1.0493 | 4.0 | 300 | 1.0809 | 0.395 | | 1.0783 | 5.0 | 375 | 1.0791 | 0.4017 | | 1.0689 | 6.0 | 450 | 1.0774 | 0.4083 | | 1.0606 | 7.0 | 525 | 1.0758 | 0.4117 | | 1.0286 | 8.0 | 600 | 1.0743 | 0.4117 | | 1.0504 | 9.0 | 675 | 1.0729 | 0.415 | | 1.0349 | 10.0 | 750 | 1.0714 | 0.415 | | 1.0372 | 11.0 | 825 | 1.0701 | 0.4167 | | 1.0665 | 12.0 | 900 | 1.0688 | 0.4233 | | 1.0542 | 13.0 | 975 | 1.0676 | 0.4233 | | 1.0662 | 14.0 | 1050 | 1.0664 | 0.4267 | | 1.0308 | 15.0 | 1125 | 1.0653 | 0.4283 | | 1.0599 | 16.0 | 1200 | 1.0642 | 0.4283 | | 1.0281 | 17.0 | 1275 | 1.0632 | 0.43 | | 1.0433 | 18.0 | 1350 | 1.0622 | 0.4383 | | 1.0474 | 19.0 | 1425 | 1.0612 | 0.4433 | | 1.0662 | 20.0 | 1500 | 1.0603 | 0.4467 | | 1.0359 | 21.0 | 1575 | 1.0595 | 0.4417 | | 1.0248 | 22.0 | 1650 | 1.0587 | 0.4417 | | 1.0401 | 23.0 | 1725 | 1.0579 | 0.445 | | 1.0329 | 24.0 | 1800 | 1.0572 | 0.4467 | | 1.053 | 25.0 | 1875 | 1.0565 | 0.4533 | | 1.0305 | 26.0 | 1950 | 1.0558 | 0.4533 | | 1.0308 | 27.0 | 2025 | 1.0552 | 0.455 | | 1.0523 | 28.0 | 2100 | 1.0546 | 0.4567 | | 1.0577 | 29.0 | 2175 | 1.0541 | 0.4583 | | 1.0456 | 30.0 | 2250 | 1.0535 | 0.4583 | | 1.0268 | 31.0 | 2325 | 1.0531 | 0.4583 | | 1.0567 | 32.0 | 2400 | 1.0526 | 0.4617 | | 1.0191 | 33.0 | 2475 | 1.0522 | 0.465 | | 1.0381 | 34.0 | 2550 | 1.0518 | 0.47 | | 1.0572 | 35.0 | 2625 | 1.0514 | 0.47 | | 1.0481 | 36.0 | 2700 | 1.0511 | 0.47 | | 1.022 | 37.0 | 2775 | 1.0508 | 0.4683 | | 1.0366 | 38.0 | 2850 | 1.0505 | 0.4683 | | 1.029 | 39.0 | 2925 | 1.0502 | 0.4683 | | 1.0115 | 40.0 | 3000 | 1.0500 | 0.47 | | 1.0512 | 41.0 | 3075 | 1.0498 | 0.47 | | 1.0219 | 42.0 | 3150 | 1.0496 | 0.47 | | 1.046 | 43.0 | 3225 | 1.0495 | 0.47 | | 1.0476 | 44.0 | 3300 | 1.0494 | 0.47 | | 1.0512 | 45.0 | 3375 | 1.0493 | 0.47 | | 1.0286 | 46.0 | 3450 | 1.0492 | 0.47 | | 1.0307 | 47.0 | 3525 | 1.0491 | 0.47 | | 1.0266 | 48.0 | 3600 | 1.0491 | 0.47 | | 1.0403 | 49.0 | 3675 | 1.0491 | 0.47 | | 1.011 | 50.0 | 3750 | 1.0491 | 0.47 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0