--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: smids_1x_deit_small_sgd_00001_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5033333333333333 --- # smids_1x_deit_small_sgd_00001_fold4 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0280 - Accuracy: 0.5033 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0927 | 1.0 | 75 | 1.0671 | 0.43 | | 1.0963 | 2.0 | 150 | 1.0650 | 0.4317 | | 1.0708 | 3.0 | 225 | 1.0630 | 0.43 | | 1.0487 | 4.0 | 300 | 1.0611 | 0.4317 | | 1.0896 | 5.0 | 375 | 1.0592 | 0.435 | | 1.0673 | 6.0 | 450 | 1.0575 | 0.435 | | 1.067 | 7.0 | 525 | 1.0559 | 0.4367 | | 1.0743 | 8.0 | 600 | 1.0543 | 0.4417 | | 1.0607 | 9.0 | 675 | 1.0527 | 0.445 | | 1.058 | 10.0 | 750 | 1.0512 | 0.4483 | | 1.0598 | 11.0 | 825 | 1.0498 | 0.4483 | | 1.0745 | 12.0 | 900 | 1.0485 | 0.45 | | 1.0539 | 13.0 | 975 | 1.0472 | 0.45 | | 1.0532 | 14.0 | 1050 | 1.0460 | 0.455 | | 1.0553 | 15.0 | 1125 | 1.0448 | 0.4567 | | 1.0605 | 16.0 | 1200 | 1.0437 | 0.465 | | 1.0719 | 17.0 | 1275 | 1.0426 | 0.4667 | | 1.0217 | 18.0 | 1350 | 1.0415 | 0.465 | | 1.0569 | 19.0 | 1425 | 1.0406 | 0.4617 | | 1.0748 | 20.0 | 1500 | 1.0396 | 0.4633 | | 1.0485 | 21.0 | 1575 | 1.0388 | 0.4633 | | 1.0436 | 22.0 | 1650 | 1.0379 | 0.465 | | 1.0728 | 23.0 | 1725 | 1.0371 | 0.47 | | 1.0532 | 24.0 | 1800 | 1.0364 | 0.475 | | 1.0361 | 25.0 | 1875 | 1.0357 | 0.4767 | | 1.0392 | 26.0 | 1950 | 1.0350 | 0.475 | | 1.029 | 27.0 | 2025 | 1.0343 | 0.4767 | | 1.0447 | 28.0 | 2100 | 1.0337 | 0.4733 | | 1.0454 | 29.0 | 2175 | 1.0332 | 0.4783 | | 1.0483 | 30.0 | 2250 | 1.0326 | 0.4783 | | 1.0373 | 31.0 | 2325 | 1.0321 | 0.4833 | | 1.0733 | 32.0 | 2400 | 1.0316 | 0.485 | | 1.0534 | 33.0 | 2475 | 1.0312 | 0.4883 | | 1.043 | 34.0 | 2550 | 1.0308 | 0.4883 | | 1.0232 | 35.0 | 2625 | 1.0304 | 0.4883 | | 1.0268 | 36.0 | 2700 | 1.0300 | 0.4917 | | 1.0287 | 37.0 | 2775 | 1.0297 | 0.495 | | 1.0612 | 38.0 | 2850 | 1.0294 | 0.4967 | | 1.0429 | 39.0 | 2925 | 1.0292 | 0.4983 | | 1.0312 | 40.0 | 3000 | 1.0290 | 0.4983 | | 1.0436 | 41.0 | 3075 | 1.0287 | 0.5 | | 1.0377 | 42.0 | 3150 | 1.0286 | 0.5 | | 1.046 | 43.0 | 3225 | 1.0284 | 0.5017 | | 1.0455 | 44.0 | 3300 | 1.0283 | 0.5033 | | 1.0485 | 45.0 | 3375 | 1.0282 | 0.5033 | | 1.0401 | 46.0 | 3450 | 1.0281 | 0.5033 | | 1.0459 | 47.0 | 3525 | 1.0280 | 0.5033 | | 1.0359 | 48.0 | 3600 | 1.0280 | 0.5033 | | 1.0504 | 49.0 | 3675 | 1.0280 | 0.5033 | | 1.0198 | 50.0 | 3750 | 1.0280 | 0.5033 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0